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Abstract: 

A number of catastrophes could block the sun, including asteroid/comet impact, super volcanic 

eruption, and nuclear war with the burning of cities (nuclear winter). The problem of feeding 7 

billion people would arise (the food problem is more severe than other problems associated with 

these catastrophes). Previous work has shown this is possible converting stored biomass to food 

if industry is present. A number of risks could destroy electricity globally, including a series of 

high-altitude electromagnetic pulses (HEMPs) caused by nuclear weapons, an extreme solar 

storm, and a super computer virus. Since industry depends on electricity, it is likely there would 

be a collapse of the functioning of industry and machines. Additional previous work has shown 

that it is technically feasible to feed everyone given the loss of industry without the loss of the 

sun. It is possible that one of these sun-blocking scenarios could occur near in time to one of 

these industry-disabling scenarios. This study analyzes food sources in these combined 

catastrophe scenarios. Food sources include extracting edible calories from killed leaves, 

growing mushrooms on leaves and dead trees, and feeding the residue to cellulose-digesting 

animals such as cattle and rabbits. Since the sun is unlikely to be completely blocked, fishing and 

growing ultraviolet (UV) and cold-tolerant crops in the tropics could be possible. The results of 

this study show these solutions could enable the feeding of everyone given minimal preparation, 

and this preparation should be a high priority now. 

1. Introduction

A number of catastrophes could obscure the sun, including bolide (asteroid/comet) impact, 

supervolcanic eruption, and nuclear war with the burning of cities (nuclear winter) (Bostrom and 

Cirkovic, 2008). Blocking of the sun would result in the collapse of traditional agriculture and 

demand a new source of calories for the world's population. 

In addition, there are several natural and human-caused catastrophes that could result in global-

scale long-term electrical grid and/or electronics failure. The loss of the grid and/or elimination 

of all non-shielded electronics would be expected to halt the majority of industries and machines. 

A high-altitude electromagnetic pulse (HEMP) caused by a nuclear weapon could disable 

electricity over a large part of a continent (Foster, 2008). It is conceivable that multiple HEMPs 

could be produced around the world, due to a world nuclear war or from terrorists co-opting 
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nuclear weapons. This could destroy the majority of electrical grid infrastructure globally, and as 

fossil fuel extraction and industry is dependent on electricity, industry could also be disabled 

(Foster, 2008). Similarly, solar storms have damaged transformers connected to long 

transmission lines (Board, 2008). There is evidence that within the last 2000 years, two solar 

storms occurred that were much more intense than modern society has endured (Mekhaldi et al., 

2015). Though solar storms may last less than the half a day required to directly expose the entire 

earth, the earth's magnetic field lines redirect the storm to affect the opposite side of the earth 

(Board, 2008). Therefore, it is possible that an extreme solar storm could disable electricity 

globally. In addition, Stuxnet was a computer virus that disabled Iranian centrifuges (Kushner, 

2013). There is evidence that a computer virus shut down electricity on a small scale (Goodin, 

2016). It is possible that coordinated attacks on many electric grids could disrupt industry 

globally. An electricity-disabling event could occur in close temporal proximity to one blocking 

the sun. Furthermore, if a sunblocking scenario were to cause global cooperation to break down, 

industry could also collapse. It is the combination scenarios of losing industry and much sunlight 

that are the focus of this study.  

 

Two estimates put the probability of full-scale nuclear war at order of magnitude 1% per year 

(Barrett et al., 2013; Hellman, 2008). Then there is uncertainty in whether this would cause 

agricultural collapse and whether it would cause industrial collapse. However, if these latter 

probabilities together are 1%, this means there is a 0.01% chance per year that industry would 

collapse and 50% of the sun would be blocked. Given that there are other routes to losing the sun 

and industry, this gives roughly 1% chance this century. This scenario presents a grave threat to 

civilization, which could have repercussions for the far future. Because there are potentially so 

many future generations, the far future is of overwhelming importance (Beckstead, 2013). 

 

The extended diminishment of the sun and loss of industry would present many problems. The 

first priorities are food, water, shelter and clothing as these are the basic necessities. With the 

loss of industry, provision of food is likely to be the greatest challenge, and this is the primary 

focus of the analysis presented here.  

 

Additional challenges covered here include provision of water treatment and transportation to 

food and water sources. Previous work has analyzed provisioning needs in scenarios of the sun 

being blocked (Denkenberger and Pearce, 2014). In these scenarios, industry was assumed to 

remain functioning (Denkenberger and Pearce, 2015), which allows the possibility of 

maintaining near-current living locations and levels of consumption of goods. In this study, the 

additional collapse of industry precludes this so only a technical path to save nearly all human 

life in such a catastrophe is analyzed. We consider the worst-case scenario where industry is 

disrupted over an extended period.  

 

2. Background and Assumptions 
 

In some of the less challenging combined catastrophe scenarios, it may be possible to continue 

running the majority of machines for a short time with the fossil fuels that had previously been 

brought to the surface or from the use of microgrids or shielded electrical systems. Strategic 

petroleum reserves are typically underground, which may not be accessible. There is significant 

above-ground crude oil because much crude oil is shipped across the ocean and this takes a long 



 

time. Also, there is significant storage of coal at power plants. But the most valuable fuels likely 

would be gasoline and diesel. The net available shell storage capacity of terminals and tank 

farms in the U.S. is 40 billion L of gasoline and 30 billion L of diesel (Energy Information 

Administration, 2016). Though this capacity would not be fully utilized, this does not include the 

storage in pipelines, trucks, vehicle filling stations, and households. Therefore, we use these 

numbers a proxies for the storage, and multiply by five to estimate the global value. The fuel use 

rate of a chainsaw at near maximum power is 1.3 L/hr (Magnusson et al., 2000). It would take 

~130 billion chainsaw hours to fell and delimb all the tropical trees in the world (Denkenberger 

and Pearce, 2014). Therefore, it would require about 80% of gasoline storage to fell and delimb 

the tropical trees. The energy intensity of trucking is 2.2 MJ/(ton-km) (Brown and Hatch, 2002). 

If the weight of each person plus equipment and supplies is 120 kg, to relocate 1 billion people 

4000 km to the forests would require 18% of diesel storage. This is very conservative because 

much of the movement would be accomplished by far more efficient rail, and even trucks can be 

run more efficiently than currently. 

 

Furthermore, natural gas would continue to bleed out of wells without any human input. It may 

be possible without large-scale industry to retrofit some vehicles to burn natural gas. Then the 

natural gas could be stored in large bags (Dartnell, 2014) or possibly compressed into tanks to 

allow longer distance trips. In addition, it is possible to run some machines on gasified wood 

(LaFontaine and Zimmerman, 1989). Repairing these systems and re-establishing electrical 

infrastructure would be a goal of the long term and this work would start immediately after a 

catastrophe. However, human needs would need to be met immediately (and continually) and 

here we focus on what is technically possible without the electrical infrastructure and half of 

sunlight, leaving economics and politics for future work. 

 

Previous work has analyzed food sources as if they were individual, with the goal of ramping to 

100% of human food requirements as quickly as possible. The present work recognizes that the 

goal would be a diversity of foods. Furthermore, the current analysis includes interactions 

between food sources, and allows the addition of each food source to a total supply similar to 

(Baum et al., 2015). 

 

HEMPs could disable vehicles, including ships (Foster, 2008). However, these detonations 

would not likely be over open oceans, which means that many ships may still be operational. 

However, it is possible that a series of super computer viruses could disable ships through the 

Internet or GPS links. Ships may lose powered motion and continue to drift due to currents and 

winds. Currents alone would generally not bring ships to shore, but wind would. Empty ships 

and container ships with lower density cargo sit higher in the ocean and would be pushed faster 

by the wind. To extend the lives of the crew, solar stills could be improvised on the ships for 

freshwater production. There would be some food storage and it may be possible to improvise 

gear to harvest fish and edible seaweed. When the ship gets close to shore, or ahead of time if the 

people are going to die before reaching shore, it may be possible to let the anchor down to avoid 

the ship running aground and being damaged. However, storms could damage the drifting ships. 

The locations of some of the ships could be estimated by human memory and non-electronic 

records. Also, known shipping lanes could be targeted for rescue missions. Since the disabling of 

ships is not very likely and even if they were disabled there are number of retrieval options, we 

assume that all ships are available to use.  



 

 

The calculations are accurate to within an order of magnitude. However, when summing multiple 

food sources, the uncertainty decreases. 

 

3. Food  

 

3.1 Stored Food and Agriculture in Reduced Solar Conditions 

Global grain production is ∼2.7 billion tons (Gt)/yr (Tilman et al., 2002), and grains are ∼29% 

total of fiber and moisture (Hurburgh, 2006; United States Department of Agriculture, 2006). 

Therefore, this is ∼1.9 Gt/yr dry carbohydrate equivalent. Grains make up half of the calories 

produced (Meadows et al., 2004); thus, the total food production is ∼3.8 Gt dry/yr. The food 

requirement with low waste is 1.5 Gt/yr (Denkenberger and Pearce, 2014). Livestock consume 

35% of the world’s grain (Earth Policy Institute, 2011). Therefore, the initial state before the 

catastrophe shows a plant production of 210% of requirement (not including the part that goes to 

livestock) and 10% of requirement animal products (see Figure 1). 
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Figure 1. One possible scenario of the alternate foods supply as a function of time. 

The average annual global wheat storage is 4 months at current wheat consumption (Do et al., 

2010). Assuming this applies to all grains, there would be 5 months of full food from grain 

storage. In addition, we estimate that there is a 1-month supply at crisis levels of consumption of 

food total in the following locations: households, stores, and warehouses (livestock would 

generally be retained, but with alternate feed). 

 

The soot released into the stratosphere from the burning of cities in a regional nuclear war would 

increase UV levels at the surface significantly (Mills et al., 2008). Full-scale nuclear war focused 

on here would be significantly worse (Bardeen unpublished results). The tropics would generally 

stay unfrozen, but even though crops currently grown outside the tropics would be able to 

tolerate the lower light, precipitation, and temperature, they generally would not be adapted for 

the high UV levels. One exception is crops being grown on the Tibetan plateau because of the 

thin high-altitude atmosphere. Here the UV index exceeds 16 for a significant amount of time 

(Chen et al., 2013). There is uncertainty, but roughly the UV levels in the tropics near sea level 

would recover to current Tibetan values after three years (Bardeen unpublished results). 

 

Because a variety of crops is grown on the Tibetan plateau, this gives potential for handling 

different soil conditions in the tropics. There are also other high-altitude areas like the Andes 

from which crops could be relocated. Most crops now are grown outside their native habitat 

(Robinson, 2007), bolstering the feasibility of relocation. 

 

Only about one percent of the total area of the Tibetan plateau is cultivated and two thirds of the 

total area or 165 million ha is classified as rangeland (Miller, 2003). Therefore, the cultivated 

area is approximately 25,000 km2. The number of seeds available from Tibet depends on the 

timing of the catastrophe. The best case would be at harvest, so that all seeds could be relocated 

and not eaten. The worst-case would be immediately after planting such that the plants would not 

mature and produce new seed. But even in this case, some seed would be withheld from planting 

as seed-producing operations will typically carry over 1-3 years of stock seed as insurance 

against a crop failure (Chester et al., 1988). Since one seed planted will produce approximately 

100 seeds at harvest (Chester et al., 1988), we conservatively assume initial seed amounts 100 

times lower than at harvest.  

 

Since the yield is approximately 100 times as much as the planted seed, and we divide this by six 

to represent unfavorable climactic and industrial conditions. In reality, the yield per plant may 

not decrease as much as the yield per planted area. Furthermore, crops producing more seeds 

could be favored and they could be harvested twice per year in the tropics. Therefore, this 

ramping analysis is very conservative. To maximize the ramp rate of plants, only the part of the 

plants that are not seeds should be eaten initially. 

 

With a growth rate of a factor of 16 per year, this would cover the entire tropical land area of 30 

million km2 in approximately 3 years providing significant food as shown in Figure 1. 

 

Soon after the catastrophe, UV levels may be too high to grow crops outdoors, but they could be 

grown under glass or polymer. Though there is limited supply of these materials, the initial area 



 

planted is small. During the first few generations, further UV resistance could be bred into the 

plants. 

 

As the climate recovers, the productivity in the tropics would increase and planted area could be 

expanded. We estimate near full climate recovery after 15 years based on (Robock et al., 2007) 

and this corresponds to 380% as much as food requirements because entire current planted and 

forest area would be cultivated without industry (Cole et al., 2016). We assume that the 

productivity in the tropics once UV levels recover to that of Tibet would be approximately half 

as much as the normal climate, loss of industry scenario (which conservatively assumes 

preindustrial agricultural productivity and no substitution to higher calorie per hectare crops 

(Cole et al., 2016)). There would be significant fertilizer available from the conversion of leaves 

and wood. Also, tropical trees would be converted preferentially so that the time the tropics is 

covered with crops, much of the wood would be gone. Even in places where there is still wood, it 

would be possible with nonindustrial techniques to plant the crops between the logs. This alone 

produces enough food to feed everyone. If we were to instead take half the productivity of 

current Tibetan grains (4.5 ton/ha (Miller, 2003)), the amount of food produced would feed 

everyone three times over with just tropical area. Also, we ignore the possibility of grazing 

outside the tropics, so this analysis is conservative. 

 

A number of experiments have subjected conventional crops to very high UV levels (Kakani et 

al., 2003). More work would be needed to fully simulate the conditions of nuclear winter in the 

tropics, but the results are encouraging. If conventional crops could be grown in the tropics 

immediately after the catastrophe, the supply from plants would be significantly higher in the 

first few years than shown in Figure 1. 

 

Without mechanization, a farmer can grow four hectares of wheat, which would feed about 20 

people (Langer, 1994). Unfavorable climate would worsen the situation, but still there is 

significant margin of safety from a labor perspective. 

 

3.2 Leaves 

The human-digestible fraction of the dry weight of killed tree leaves (as opposed to depleted 

leaves that are shed to become leaf litter) is approximately 50% (Jacquemoud et al., 1996) and 

we assume this applies to all nonwoody biomass that is killed by the catastrophe. The promising 

nonindustrial technique to extract human food from leaves involves grinding and pressing leaves, 

and then coagulating (causing the solids to clump for removal) the resultant liquid (Kennedy and 

Leaf for Life, 1993). The hand powered equipment could be constructed without industry, but 

remaining fossil fuels could accelerate the process. 

 

The global nonwoody vegetation is ∼90 Gt (Denkenberger and Pearce, 2014). With limited 

transportation capabilities, people would generally need to move to the leaves. In the case of tree 

leaves, this would then set the people up to convert the wood to food as well. Humans would 

carefully control competing mammals that could eat the dead leaves. Also, with the lower 

temperatures, competing insects would be less of a problem. 

 



 

The labor for harvesting the leaves could be minimized by running a gloved hand over the 

branch to strip many leaves/needles off at once. Chainsaws with residual fossil fuel could cut the 

trees down quickly. 

 

If half of nonwoody biomass is nontoxic with 5% dry matter extraction, it would be a 1.5 year 

supply of full human food. This could be ramped up very quickly because no organisms need to 

grow (see Figure 1). The remaining liquid that does not coagulate is brown. This could be fed to 

non-cellulose digesters such as chickens (see Figure 1). 

 

Then the solids from the initial pressing could be fed to mushrooms or cellulose-digesting 

animals (ruminants, horses, rabbits, etc.), depending on availability of these organisms and 

demand for different types of food. In Figure 1, we assume this all goes to mushrooms because at 

least initially there are insufficient cellulose-digesting animals. These mushrooms would be 

grown indoors in existing structures, and temporary structures where necessary. The temporary 

structures could be log cabins or sod houses where there is not forest. White button mushrooms 

have a maximum biological efficiency (wet weight of mushrooms divided by dry weight of 

growing medium) of 100% (Chang and Miles, 1984) so with 90% water, this is ∼10% caloric 

efficiency. We assume half the 10% value due to nonideal substrates and pests. Mushrooms 

could also grow on depleted leaves. With roughly twice the biomass available and the same 

conversion efficiency as leaf extraction, this could provide three years of full human food. 

Mushrooms can have billions of spores, so the ramp rate is very high. 

 

The waste from the mushroom growth contains the mycelia (“roots”) of the mushroom. It may be 

feasible to have chickens pick the mycelia out. The remainder can be fed to cellulose digesting 

animals (Spinosa, 2008), which in turn could be eaten by humans. 

 

3.3 Trees 

Log structures could be constructed without industry to house mushrooms growing on logs. The 

heat released from the oxidation of the wood may provide enough heating, but biomass burning 

could always provide additional heating. It would be best to pull the trees down in order to 

expose many of the roots. We assume this additional biomass would counteract the biomass 

required for heating and other uses, so that the available amount of biomass for mushroom 

conversion is the aboveground mass (40% of the total vegetation (Food and Agriculture 

Organization, 2000)). This yields approximately 400 Gt of dry equivalent. Then in order to have 

animals (or trucks with remaining diesel) pull the logs into structures, the logs should be severed 

from the root base with chainsaws.  

 

There are other constraints associated with preparing the wood for mushroom growth, including 

making spawn (mushroom spores plus a growing medium), making holes for the spawn, putting 

the spawn in the holes, and sealing the holes to prevent competing organisms. Spawn can be 

based on sawdust, which could come from drilling). Humans could hand make human- or 

animal-powered drills. The worst-case scenario from a labor perspective is a hand-powered drill. 

One recommendation for the holes is 8 mm diameter, 40 mm depth, and 70 mm separation 

(Hazeltine and Bull, 2003). If it takes one minute to drill the hole, this yields 1.4 people fed by 

mushrooms per driller. However, the food production is over approximately 4 years, so there is 

significant labor investment. On the other hand, cattle can convert cellulose to food at 



 

approximately 11% efficiency (Denkenberger and Pearce, 2014), and we assume that 80% of the 

initial energy in the wood remains after mushroom production, which is the case for mushrooms 

grown on manure (Brendan Borrell, 2009). This would feed about nine times as many people as 

the mushrooms, and rabbit conversion efficiency would be even higher. Also, given the hole 

dimensions recommendation was for an electric drill, it may be possible to reduce drilling 

requirements without significantly degrading mushroom output.  

 

The current technique for sealing the holes is using paraffin wax, but there would be insufficient 

supply of this. Therefore, an alternative is heating polymer film (possibly salvaged from landfills 

or produced from above-ground fossil fuels) and applying this. Sealing may not even be 

required, because once the mushrooms fruit, they break the seal. And they fruit many times over 

the years it takes to consume the logs. 

 

A log 1 m long and 0.1 m in diameter will produce ~1 kg of wet mushrooms over 4 years 

(Hazeltine and Bull, 2003). The dry density of wood is 0.5 g/cm3 (Ragland et al., 1991) and 

mushrooms are ∼10% dry weight (Chang and Miles, 2000), so this yields ~2% caloric 

efficiency. Therefore, outdoor mushroom growth is estimated to be 1% because of nonideal logs, 

pests, and inexperienced human error. This would provide three years of food for all people. 

Mushroom food production starts 6 months after the catastrophe as shown in Figure 1. With 1 

billion people drilling over the years, the food produced from the mushrooms ramps up and 

peaks after about four years when the mushrooms stop producing. After that, freshly drilled trees 

start producing mushrooms, maintaining output. This would not require all the trees in the 

tropics, which is why the feasibility of preparing the trees in the tropics was considered with 

remaining gasoline. 

 

Again, the waste from the mushrooms could be fed to cellulose digesters such as cattle and 

rabbits. The food production ramp curve of large cellulose digesters is the same as in previous 

work, though we truncate it at 25% because other food sources are sufficient at this point. 

 

Rabbits have an age and sexual maturity of four months per litter, four litters per year (Zhiqiang 

and Xiaoyan, 2008). This results in an ideal growth rate of approximately 500%. Taking the 

square root yields 150% per year growth rate. There are ~700 million domesticated rabbits 

globally (Lukefahr, 1985), which is a significant underestimate of the total number of rabbits. 

With an average wet weight of 1 kg, this represents an initial caloric production of 0.05% of 

human food.  

 

Waste from these cellulose-digesting animals could be fed to chickens because the waste is high 

in bacteria, which can be digested by non-cellulose digesters. Disease risk from animals eating 

the excrement from other animals can be minimized by pasteurizing the waste, having the 

animals not closely related and by proper handling and cooking of animal products. However, we 

conservatively ignore the potential food production from this route. 

 

The labor required for other steps for wood mushrooms production or other food production, 

such as cutting down trees if gasoline supply is insufficient, harvesting leaves, making temporary 

structures, etc. is significantly less than hand-drilling holes. 

 



 

It should be noted that, after the trees die and dry out, they would be susceptible to fire. 

Lightning can cause smoldering for several days before it transitions into active flaming 

combustion (Kasischke and Stocks, 2012). Since people will quickly distribute themselves to 

small plots of forest that they are converting into food, it should be feasible for them to survey 

the land for any smoke after each lightning storm. The smoldering combustion could likely be 

extinguished manually. Alternatively, it may be possible to install lightning rods to protect the 

forests, perhaps elevated by select trees or balloons filled with leaked natural gas. If these 

techniques are not successful, society could focus on trees in areas where it is frozen much of the 

time. Mushrooms could grow on trees inside log structures. Though lightning could ignite the 

warmed logs inside, there would be significant spacing between the structures and they would 

have a cold exterior, so fire spread would be unlikely. 
 

3.4 Fishing 

The ramp rate for fish is the same as in previous work (Denkenberger and Pearce, 2015), though 

this is added to current production of approximately 3% of the human food from fish. However, 

without industry, the catch rate would be significantly lower. Scaling Chinese total tonnage 

capacity of fishing vessels by its catch to the global catch yields current total tonnage capacity of 

fishing vessels of 54 million tons (FAO, 2014). Cargo ship capacity is approximately 800 million 

tons (Christiansen et al., 2004). With one third the speed (see Section 4.1) and all ships 

retrofitted to be fishing, this yields a maximum fish catch of ~40% of human food. 

Unfortunately, this would only persist until the nutrients in the upper layer of the ocean are 

depleted. We model this as a sudden reduction in fish catch after 2.5 years (see Figure 1), 

recognizing that it would actually be a slow reduction.  

 

Some amount of production could be maintained by fertilizing the ocean. Since there are 

nitrogen-fixing bacteria in the ocean (Karl et al., 1997), we focus on phosphorus. Small fish are 

~4% phosphorus by dry weight (Santos et al., 2016). Unfortunately, there is very little 

phosphorus in wood ash (Karoline, 2012). However, there is roughly 2.5% phosphorus by weight 

in dried chicken manure (Ghaly, 2013). In the ocean iron fertilization experiments, only ~7% of 

carbon initially sequestered is expected to fall to the ocean floor over a 100 year period 

(Gnanadesikan et al., 2003). Using this percentage to determine the efficiency of conversion of 

phosphorus into fish, this yields a 240% weight of dry manure to fertilize a given weight of dried 

fish. This means some ships would be dedicated to fertilizing, in addition to the fertilizer brought 

out by the fishing ships. Since the overall fish yield is significantly lower than in the upwelling 

case (see Figure 1), there would be sufficient ships. Though conversion to phosphorus could be 

lower efficiency, waste from other animals and humans could be used. Biomass fires could be 

used to dry the fish on the ship. It may be possible to concentrate the nutrients in the manure by 

removing residual fiber, requiring less shipping. 

 

The chicken manure could instead be fed to mushrooms or cellulose digesters. However, fish 

would provide additional diet diversity. Also, the conversion efficiency (not counting the solar 

energy input) would be higher for fish. Of the dry feed of chickens, ~50% is converted into dry 

weight of manure (McCall, 1980).1 The resulting fish output is shown in Figure 1.  

 

                                                           
1 This statistic was originally from 1914, which could be appropriate for the loss of industry and for nonideal food 
for chickens. 



 

One way of increasing fish output during upwelling would be by reducing fishing transportation 

by relocating people to islands.  

 

3.5 Interactions 

Figure 1 shows one possible scenario for the deployment of various food sources. Obviously 

many more are possible, though the food sources dependent on the waste from other conversion 

processes are constrained because the waste must first be produced, and the preservation of those 

wastes to use later would be more difficult. The scenario shown attempts to make the food 

supply fairly consistent and also provide a diversity of foods at all times. Leaf extraction is 

ramped up to a high level to limit the use of stored food. Then the leaves killed by the 

catastrophe are consumed by the time agriculture becomes large. Mushrooms grown on leaves 

have similar behavior because they are largely depending on the waste from leaf extraction. This 

helps with diet diversification. Leaf extraction continues at a lower level based on agricultural 

residues, and this assumes that the dry weight of the agricultural residues that is not toxic is equal 

to the dry weight of the food grown. With six months of stored food, we chose a minimum of 

150% of food requirements, which allowed some stored food to be consumed over the entire 10-

year period. Rabbits and ruminants are capped even though more food could be obtained from 

them with the copious mushroom-digested wood. After about five years, the safety margin 

becomes very large. This is fortunate because if burning of biomass is a significant problem, it 

would be more severe the further one goes from the time of the catastrophe. The actual food 

consumption can be smoother than this graph by storing alternate foods. After 10 years, 

agriculture could recover to pre-catastrophe levels. Therefore, we assume that alternate foods are 

ceased, and the practice of feeding edible food to animals reappears. 

 

3.6 Other potential food sources 

Having bacteria partially decompose lignocellulose (fiber) for noncellulose digesters (humans, 

chickens, and rats (the latter are partial cellulose digesters)) is less certain to succeed, especially 

without industry, so it is not considered here. Another food source considered in previous work 

was cellulose-digesting beetles. However, the ramping time was similar to rabbits considered 

here. And rabbits are superior from the perspectives of taste, social acceptability and ease of 

raising. Methane-digesting bacteria were also considered in previous work, but without industry, 

the supply of natural gas would be much smaller and the process would likely need to rely on 

industrial techniques. Furthermore, the technique of producing enzymes at scale to turn cellulose 

into sugar would also likely require industry. A new possibility is pyrolyzing wood to produce 

methane and hydrogen for bacteria. This also produces charcoal, meaning the conversion 

efficiency to bacteria would be lower. However, some amount of charcoal would be useful for 

heating and cooking. Also, this process would produce food far faster than mushroom softening 

of wood. Charcoal can be made without industry, but the growing of the bacteria would benefit 

from industrial techniques. Therefore, this food source is not quantified here. 

 

Mushrooms could also grow on currently decomposing wood in forests and landfills and on peat 

(Rhodes, 2014). However, peat and to some extent landfills would put carbon dioxide into the air 

that would not otherwise make it there. Furthermore, people may reject food grown on landfill 

material. Competing organisms would be more difficult to control on currently decomposing 

wood. 

 



 

Other food sources not quantified here that could be analyzed for future work include seaweed 

and termites eating wood.  

 

Still other food sources would require much more extensive preparation. Storing food would be 

very expensive and would exacerbate current malnutrition (Baum et al., 2015). Crops could be 

genetically engineered for cold and UV tolerance, but in order to produce a significant amount of 

food rapidly, either the crops need to be planted or a large amount stored. 

 

3.7 Diet Diversity 

 People outside the tropics inland would have some diet diversity with leaf extract, 

mushrooms, and land animals. The majority of the fishing initially would be outside the tropics 

because that is where the ocean would upwell. People on the coast would therefore have fish and 

perhaps some seaweed. People in the tropics would have leaf extract, mushrooms, land animals, 

and plants. Therefore, some trade would be very beneficial for diet diversity.  

 

4. Nonfood needs 

Providing nonfood needs in this scenario is similar to the scenario of only losing industry, which 

has been covered previously (Abdelkhaliq et al., 2016). Here we only discuss additional 

challenges. 

 

4.1 Transportation 

Immediately after the catastrophe, there would likely be significant winds because the continents 

would cool off faster than the oceans. However, after this transient period, wind intensity is 

likely to be lower than normal because wind is generally driven by the sun. When the sun is 50% 

blocked, the winds driving the ships would be roughly 2/3 as fast (Bardeen unpublished results). 

This means that the wind-powered vehicles could go only 2/3 as fast as the case of no sun 

blocking (wind powered with no sun blocking was half as fast as with industry (Abdelkhaliq et 

al., 2016)), so overall this is one third as fast as currently. 

 

The current global shipping traffic is 53,000 Gt moved 1 kilometer (Gt-km) (UNCTAD, 2009). 

This does not include the capacity of military and other vessels, which is conservative. With the 

slower speed in a catastrophe and being full both directions, duty cycle would be higher. 

However, it will take longer to load and unload without industry, so we assume duty cycle 

remains the same. With one third the speed of current ships the capacity would be 18,000 Gt-km. 

If we consider 0.2 Gt of food being required to be transported 12,000 km over the ocean, this 

would be 2,400 Gt-km/yr. Of course there would be other shipping requirements, but there is 

significant safety margin, which is why we assumed that nearly all merchant ships would be 

available for fishing. 

  



 

If this same 0.2 Gt of food needs to be moved 4,000 km over land total (on both the producing 

and receiving continents), this is 800 Gt-km/yr. Barges could be kite powered at least part of the 

time, but modern ones are so large that it would be difficult for animals to pull them. Heavy 

trucks would also take many animals. However, with the low rolling resistance of rail (0.0015 

(Toolbox, 2016)), not too many animals would be required to pull a single railcar. However, 

there is a limited number of rail cars. Therefore, we focus this analysis on light-duty vehicles 

(LDVs). There are 190 million LDVs in the United States (U.S. Department of Transportation, 

2016), so if this is one quarter of the total, this is approximately 800 million globally. The 

average curb mass of cars in the U.S. is approximately 1500 kg (Wenzel, 2010). The average 

LDV in the U.S. would be heavier (because of vans, sport-utility vehicles, and pickup trucks), 

but we estimate that this number is reasonable for the average global LDV. A lower bound for 

the average cargo capacity is the mass of five people, roughly 350 kg. The powertrain makes up 

about 28% of the curb mass (Roth et al., 2001). Some components other than the powertrain 

could be removed, but we conservatively ignore this. Therefore, when the powertrain is 

removed, the total cargo capacity would be ~800 kg. The rolling resistance of a high pressure tire 

on asphalt is approximately 0.01 (Toolbox, 2016). There are 1.4 billion cattle in the world. An ox 

can produce 450 W of useful power for six hours a day at 1 m/s (Carruthers and Rodriguez, 

1992). Though many of the cattle in the world are dairy, which would not be as strong as oxen, 

we assume this factor counteracts the conservatism of fraction cargo capacity. On level road, 

only approximately half a head of cattle would be required to pull the fully loaded LDV. Going 

up hills would require more, and we estimate average effort is twice as much as on the level. 

These assumptions yield approximately 11,000 Gt-km/yr inland transportation capability from 

cattle pulling LDVs. This is an order of magnitude greater than the food movement requirement. 

This would allow other inland movement such as manure out of the mid-latitude continents for 

ocean fertilization, wood from forests to burn to dry manure produced in grasslands, and wood 

from forests to the coasts to put on ships for drying the fish. 

4.2 Miscellaneous 

A further additional challenge is that with roughly half as much sun, there will be about half as 

much precipitation (Robock et al., 2007). However, since vegetation would die in most areas, 

runoff and groundwater recharge could be even greater than in the case with the sun. Because 

forests require significant precipitation, there would generally be surface water available nearby. 

However, in drier areas without infrastructure, a high-value use of the remaining fossil fuels 

would be drilling wells. Then people would lower a vessel into the well to retrieve water (and 

this could be done with existing wells as well (Abdelkhaliq et al., 2016)). 

 

Another additional challenge would be clothing because of the inability to grow new fiber. There 

is a significant over supply of clothing currently, so it is unlikely to present a major challenge in 

the short term. One longer term solution is to wear animal skins, e.g. from the draft animals. 

 

With the burning of biomass to heat buildings and loss of industrial firefighting, mass fires in 

cities could be a significant risk. The lower temperatures associated with the sun being obscured 

would reduce fire spread. Selective removal of buildings would also reduce the probability of 

mass fire. This would be consistent with many people having to move out of urban areas for food 

production. 

 

5. Discussion 



 

In previous work considering the 50% sunblocking scenario with the retention of industry, 

agriculture was not considered. However, this work was too conservative considering the outputs 

predicted upon Tibetan agriculture. Now that here it has been demonstrated that agriculture could 

be important even without industry, obviously it could be important with industry. Rabbits would 

also be a promising option with industry. 

 

If industry is restored before the smoke settles, this case reverts to the 50% sun with industry 

case, which is much less challenging. Also, if industry is not restored by the time the sun comes 

back out, this reverts to the no industry case, which again is less extreme. 

 

In some cases, catastrophes can be correlated, and therefore much more likely to happen at the 

same time than if they were uncorrelated. One example of this is the use of solar radiation 

management, which reduces the amount of sunlight absorbed by the earth. This would combat 

climate change using techniques such as sulfate particles injected into the stratosphere. If this 

solar radiation management were stopped, there would be rapid warming of the climate 

(Matthews and Caldeira, 2007). Therefore, it is likely only to be stopped if there were some 

catastrophe (Baum et al., 2013). However, then society would have to contend both with the 

initial catastrophe and the rapid warming of the climate due to cessation of solar radiation 

management: “double catastrophe.” The loss of industry would clearly mean the loss of solar 

radiation management. Of course the impact on agriculture of rapid warming is different than 

rapid cooling, increased UV and lower sunlight. However, many of the techniques discussed here 

could still be used. 

 

A super crop pest (animal, e.g. insect) or pathogen could be spread globally in a coordinated 

attack (Madden and Wheelis, 2003). If the response were to restrict trade, this could cause the 

collapse of fossil-fuel-dependent industry in many areas. Even though this would not be a 

sunblocking scenario, the result would be similar to losing crops and industry. 

 

Labor calculations indicate that most people could be dedicated to restoring industry. Also, this 

means a minority of people would need to be relocated. Generally since approximately twice as 

much food as required could be produced, this indicates that little relocation of people between 

continents would be required. 

 

 

6. Future work 

It would be preferable if the catastrophe could be prevented. There are steps to reduce the 

chances of nuclear war (Barrett et al., 2013). Also, there are interventions to reduce the risk of 

losing electricity and industry (Cole et al., 2016). But even if all this prevention and protection is 

feasible and justified, until it is all implemented, a backup plan is required. 

 

We ignore the additional food sources of feeding food processing, retailing, and household waste 

to animals. Because there is significant safety margin in feeding everyone, even if food storage 

were at the minimum when the catastrophe hit, everyone could still be fed. Furthermore, it would 

be even easier to feed everyone if there were some warning before the catastrophe. 

 

We leave the actual recovery time (and mechanism) from various catastrophes for future work. 



 

 

Experiments to be performed include sealing the holes in logs by heating a sheet of polymer. The 

other food sources could be further investigated. Experiments on lightning rods and fire 

surveillance would also be valuable. Demonstrating conversion of logs into mushrooms in log 

structures subjected to freezing conditions outside would be illuminating. Nutrition is future 

work, though we note that a similar diet was shown to be adequate (Griswold et al., 2016), and 

there are other methods of producing vitamins such as growing certain types of bacteria. 

 

7. Conclusions 

 

For combined sun blocking and industrial failure scenarios, the reduced output of conventional 

agriculture would present a threat of causing mass starvation. This study showed that one 

solution in the short term is extracting edible calories from killed leaves using distributed 

mechanical processes. Then a constrained food web could be formed where part of the remainder 

from this could be fed to chickens, and the rest coupled with leaf litter could have mushrooms 

grown on it. A second group of solutions is growing mushrooms on dead trees and the residue 

going to cellulose digesting animals such as cattle and rabbits. Typically in these catastrophes the 

sun is not blocked completely, so some agriculture would be possible based off of existing 

farming in extreme environments (e.g. growing UV and cold tolerant crops in the tropics). 

Furthermore, the cooling climate would cool the upper layer of the ocean, causing upwelling of 

nutrient-rich deep ocean water. This would facilitate algae growth in the ocean, feeding fish; 

retrofitting of ships to be sail powered could enable significant fishing. The results of this study 

show these solutions could enable the feeding of everyone given minimal preparation, and this 

preparation should be a high priority now. 
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