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Abstract 

Modern civilization is highly dependent on industrial agriculture. Industrial 

agriculture in turn has become an increasingly complex and globally interconnected 

system whose historically unprecedented productivity relies strongly on external 

energy inputs in the shape of machinery, mineral fertilizers, and pesticides. It leaves 

the system vulnerable to disruptions of industrial production and international trade. 

Several scenarios have the potential to damage electrical infrastructure on a global 

scale, including electromagnetic bursts caused by solar storms or the detonation of 

nuclear warheads in the higher atmosphere, as well as a globally coordinated cyber-

attack. The current COVID-19 pandemic has highlighted the importance of crisis 

preparation and the establishment of more resilient systems. To improve 

preparation for high-stake risk scenarios their impact especially on critical supply 

systems must be better understood. To further the understanding of consequences 

for the global food production this work aims to estimate the effect the global 

inhibition of industrial production could have on the crop yields of maize, rice, 

soybean, and wheat. 

A generalized linear model with a gamma distribution was calibrated on current 

crop-specific gridded global yield datasets at five arcmin resolution. Gridded 

datasets on the temperature regime, the moisture regime, soil characteristics, 

nitrogen, phosphorus and pesticide application rates, the fraction of irrigated area 

and a proxy to determine whether farm activities are mechanized were chosen as 

explanatory variables. The model was then used to predict crop yields in two phases 

following a global catastrophe which inhibits the usage of any electric services. 

Phase 1 reflects conditions in the year immediately after the catastrophe, assuming 

the existence of fertilizer, pesticides, and fuel stocks. In phase 2 all stocks are used 

up and fertilizer, pesticides and fuel are not available anymore. 

While the fit varies dependent on the crop, the model agrees well with the data 

based on McFadden's ρ² (maize: 0.45, rice: 0.41, soybean: 0.34, wheat: 0.38). The 

predictions showed a reduction in yield of 10-30% in phase 1 and between 34 and 

43% in phase 2. Overall Europe, North and South America and large parts of India, 

China and Indonesia are projected to face major yield reductions of up to 95% while 

most African countries are scarcely affected.  

The findings clearly indicate hotspot regions which align with the level of 

industrialization of agriculture. Further, it is shown that the yield reduction is likely 
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to be substantial, especially in industrialized countries. The analysis also provides 

insights on major factors influencing crop yield under losing industry 

circumstances. Due to data unavailability some crucial factors could not be included 

in the model, but their qualitative discussion leads to the conclusion that the 

presented results can be considered optimistic, and that further research is needed 

to quantify the impact of the omitted aspects.  
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Zusammenfassung 

Die moderne Zivilisation ist in hohem Maße von der industriellen Landwirtschaft 

abhängig. Die industrielle Landwirtschaft wiederum ist zu einem immer 

komplexeren und global vernetzten System geworden, dessen historisch 

beispiellose Produktivität stark von externen Energiezufuhren in Form von 

Maschinen, Mineraldünger und Pestiziden abhängt. Dadurch wird das System 

anfällig für Störungen der industriellen Produktion und des internationalen 

Handels. Mehrere Szenarien haben das Potenzial, die elektrische Infrastruktur auf 

globaler Ebene zu beschädigen, darunter starke elektromagnetische Impulse, 

welche durch Sonnenstürme oder die Detonation von Atomsprengköpfen in der 

höheren Atmosphäre ausgelöst werden können, sowie ein global koordinierter 

Cyberangriff. Die aktuelle COVID-19-Pandemie hat gezeigt, wie wichtig die 

Krisenvorbereitung und die Einrichtung widerstandsfähigerer Systeme sind. Um 

die Vorbereitung auf Szenarien mit hohem Risiko zu verbessern, müssen deren 

Auswirkungen, insbesondere auf kritische Versorgungssysteme, besser verstanden 

werden. Das Ziel dieser Arbeit ist es, die Auswirkungen abzuschätzen, die eine 

weltweite Einschränkung der industriellen Produktion auf die Ernteerträge von 

Mais, Reis, Sojabohnen und Weizen haben könnte und somit zum besseren 

Verständnis der Folgen für die weltweite Nahrungsmittelproduktion beizutragen. 

Es wurde ein verallgemeinertes lineares Modell basierend auf einer Gamma-

Verteilung an aktuellen kulturspezifischen globalen Ertragsdatensätzen mit einer 

Auflösung von fünf Bogenminuten kalibriert. Als erklärende Variablen wurden 

georeferenzierte Datensätze über das Temperaturregime, das Feuchtigkeitsregime, 

die Bodeneigenschaften, die Stickstoff-, Phosphor- und Pestizidausbringungsraten, 

den Anteil der bewässerten Fläche und einen Proxy zur Bestimmung des 

Mechanisierungsgrads der landwirtschaftlichen Tätigkeiten gewählt. Das Modell 

wurde dann verwendet, um die Ernteerträge in zwei Phasen nach einer globalen 

Katastrophe vorherzusagen, die die Nutzung jeglicher elektrischen Infrastruktur 

verhindert. Phase 1 spiegelt die Bedingungen im Jahr unmittelbar nach der 

Katastrophe wider, wobei davon ausgegangen wird, dass Düngemittel-, Pestizid- 

und Kraftstoffvorräte vorhanden sind. In Phase 2 sind alle Vorräte aufgebraucht, 

und Düngemittel, Pestizide und Treibstoff sind nicht mehr verfügbar. 

Obwohl der Fit je nach Kultur variiert, stimmt das Modell auf der Grundlage des ρ² 

von McFadden gut mit den Daten überein (Mais: 0,45, Reis: 0,41, Sojabohnen: 
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0,34, Weizen: 0,38). Die Vorhersagen zeigten eine Ertragsminderung von 10-30 % 

in Phase 1 und zwischen 34 und 43 % in Phase 2. Insgesamt werden für Europa, 

Nord- und Südamerika und große Teile Indiens, Chinas und Indonesiens erhebliche 

Ertragseinbußen von bis zu 95 % prognostiziert, während die meisten afrikanischen 

Länder kaum betroffen sind.  

Die Ergebnisse weisen eindeutig auf Hotspot-Regionen hin, die mit dem Grad der 

Industrialisierung der Landwirtschaft übereinstimmen. Außerdem wird gezeigt, 

dass die Ertragseinbußen voraussichtlich besonders in den Industrieländern 

erheblich sein werden. Die Analyse gibt auch Aufschluss über die wichtigsten 

Faktoren, die die Ernteerträge unter den Bedingungen eines industriellen 

Stillstandes beeinflussen. Aufgrund der Nichtverfügbarkeit von Daten konnten 

einige entscheidende Faktoren nicht in das Modell aufgenommen werden. Jedoch 

führt die qualitative Diskussion dieser Faktoren zu der Schlussfolgerung, dass die 

vorgestellten Ergebnisse als optimistisch angesehen werden können und dass 

weitere Forschung erforderlich ist, um die Effekte der ausgelassenen Aspekte zu 

quantifizieren. 
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1 Introduction 

The development of agriculture was a major turning point in human history. By 

offering a stable food source throughout the year, agriculture facilitated the 

emergence of complex societies all around the globe (Miedaner, 2005; Smil, 2017). 

Agricultural practices developed simultaneously in multiple different cultures, but 

yields were low and crop production entailed many hours of hard labor: despite its 

merits, food production in agricultural societies still required the involvement of 

the better part of the population to feed everyone. 

It wasn’t until the rise of modern technology which allowed the harnessing of 

energy from fossil fuels and its introduction into agriculture in the shape of 

machinery, artificial fertilizer, and pesticides during the twentieth century that 

populations in the billions could develop. This stark increase was supported by an 

expansion of cropland by 40% (Smil, 2017, p. 311), by substantially decreasing the 

number of human work hours required to produce one ton of grain from 30h/t in 

1800 to just 90 min/t in 2000 (Smil, 2017, p. 307) and by at least quadrupling staple 

crops yields since before the Industrial Revolution (Ritchie & Roser, 2013). By 

freeing up energy for activities besides food production the steady decline of the 

share of agricultural workers in the workforce to just 27% globally in 2019 (World 

Bank, 2021) played a crucial role in facilitating the current level of complexity in 

society. 

But the rapid agricultural and societal development has severe consequences, like 

the devastating environmental effects (Flynn, 1999; Kopittke, Menzies, Wang, 

McKenna, & Lombi, 2019; Lee & Nielsen, 1987; Naeem, Ansari, & Gill, 2020; 

Sánchez-Bayo & Wyckhuys, 2019) or the challenges related to climate change 

(Dempewolf et al., 2014; Myers et al., 2017; Vermeulen, Campbell, & Ingram, 

2012), and the decreasing margins of yield increase (Alston & Pardey, 2014; M. K. 

van Ittersum et al., 2013). One aspect, however, has been underreported in the 

literature while being not less crucial: The advances of modern technology in 

agriculture have also resulted in a strong dependence of food security on global 

trade and industrial infrastructure (Neff, Parker, Kirschenmann, Tinch, & 

Lawrence, 2011; Smil, 2017, p. 306). This makes the system vulnerable to scenarios 

in which industrial infrastructure is disrupted. Especially on a global scale the 

impact can be disastrous. The current COVID-19 pandemic has demonstrated that 

events deemed highly unlikely can still occur at any given time and has exposed the 
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lack of preparedness in most countries (Brozus & Stiftung Wissenschaft und 

Politik, 2020; Liu, Lauta, & Maas, 2020). Therefore, it is imperative that preventive 

action is taken because as Nick Bostrom states in an existential catastrophe “there 

is no opportunity to learn from errors.” To better gauge the impact the inhibition of 

industrial infrastructure can have, this work seeks to present a first estimate of the 

expectable changes in agricultural yield in the case of a loss of industry. Based on 

a multiple regression analysis on spatial data, yields for a worst-case scenario are 

predicted to understand the effects of a disturbance of industrial infrastructure on 

modern agriculture.  
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2 Background 

2.1 Global Catastrophic Risks 

The term Global Catastrophic Risks (GCR) has been introduced by Nick Bostrom. 

He loosely defines it as “a risk that might have the potential to inflict serious 

damage to human well-being on a global scale” (Bostrom & Ćirković, 2008b). To 

more clearly delimit what serious damage on a global scale might entail, Bostrom 

and Ćirković (2008b) propose that an event causing ten million fatalities or ten 

trillion dollars worth of economic damage qualifies as a global catastrophe. 

Depending on the current estimates of economic losses, the COVID-19 pandemic 

ranges close or even already surpassed the ten trillion-dollar threshold (Cutler & 

Summers, 2020; Lenzen et al., 2020; Park et al., 2020; United Nations Conference 

on Trade and Development [UNCTAD], 2021). However, a global pandemic is just 

one of many different GCR scenarios compiled in Bostrom and Ćirković's book 

(2008a) and in other GCR research. Possible causes natural risks such as super-

volcanoes, comets, and asteroid impacts, risks from unintended consequences like 

climate change, pandemics, or artificial intelligence, and risks from malintent such 

as nuclear wars or biotechnological attacks. Further it is cautioned that new risks 

emerge as technology develops and that potential risks might be undetected or 

misjudged due to biases or lack of sufficient knowledge to understand the impact 

(Sandberg, 2018; Wiener, 2016; Yudkowsky, 2008). 

In the light of the sheer number of possible scenarios, classification schemes have 

been proposed to manage the scope. In addition, many experts (Avin et al., 2018; 

S. Baum & Barrett, 2017; see e.g. Bostrom & Ćirković, 2008a) in the field point 

out that in terms of risk assessment GCRs should be considered as a combined threat 

rather than individual scenarios because interactions between scenarios can increase 

the magnitude of a catastrophe’s impact and the nature of the catastrophe which is 

first to strike remains uncertain. Bostrom and Ćirković (2008b) present a taxonomy 

along the dimensions of scope (personal to transgenerational), intensity 

(imperceptible to terminal), and probability. In choosing these dimensions, Bostrom 

and Ćirković (2008b) place GCRs in a scale encompassing a continuum from 

“normal” to existential risks, with the GCRs being demarcated via their large scope 

and high intensity. Existential risks are presented as a subclass of GCRs which are 

so severe that they lead to human extinction. 
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Avin et al. (2018) take a different approach as they emphasize the importance of 

“[…] a methodology for compiling a comprehensive, interdisciplinary view of 

severe global catastrophic risks.” In accordance with this goal, Avin et al. (2018) 

focus more strongly than Bostrom and Ćirković (2008b) on qualitative rather than 

quantitative characteristics of GCR scenarios. The classification proposes to inquire 

which critical system is affected by the scenario, by which global mechanisms it 

uses to spread, and which prevention and mitigation fragilities exist (Avin et al., 

2018). 

This approach concentrates to a greater extent on systemic consequences of GCRs 

but S. D. Baum, Denkenberger, Pearce, Robock, and Winkler (2015) and others 

(e.g. Sandberg, 2018) have highlighted the importance of one critical system for 

human survival: the food production system. They argue that it is affected by most 

GCRs (Avin et al., 2018) and that it constitutes the mechanism by which many 

GCRs endanger humanity’s survival, namely by compromising agricultural 

production to the point of mass starvation. Based on the importance of the food 

system, the Alliance to Feed the Earth in Disasters (ALLFED, 2021) provides a 

framework for GCRs centered around the consequences for the global food 

production. The framework will be used to contextualize the scenarios investigated 

in this thesis. Figure 1 shows a scale in terms of percent of damage to the food 

production system and specifies five categories of disasters which vary in the 

degree of damage inflicted on the food production system. The lower and upper 

categories are presented as out of scope for global catastrophic food loss scenarios 

Figure 1: Food Production Loss Scenarios (ALLFED, 2021) 
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because local disasters don’t qualify as global catastrophes in terms of scope and 

existential risks are assumed to result in catastrophes severe enough to cause 

extinction faster than mass starvation. This leaves three categories of risks with 

severe consequences for the food production system which warrant closer 

inspection. Global disasters are expected to result in severe damage, causing 

between a three to thirty percent reduction in the food production capacity but 

without primary consequences for the structure of the agricultural system. Loss of 

industrial civilization (LoI) scenarios and global catastrophic scenarios have the 

potential to inhibit agricultural food production in its current form. However, they 

differ in their primary impacts. While loss of industrial civilization is projected to 

impact the availability of modern technological advances in agriculture, global 

catastrophes like nuclear war would result in severe climatic changes, rendering 

most of the earth’s surface too cold for agriculture. Still, loss of industrial 

civilization and societal collapse are likely to ensue in the aftermath of a nuclear 

war as a secondary impact and add another dimension of catastrophic 

consequences. 

Society is highly dependent on modern agriculture as it enables most of the 

population to occupy themselves with tasks beyond food production (Coates, 2009; 

Sandberg, 2018; Smil, 2017). This remarkable surplus in food and energy 

production can only be maintained through high external inputs into the production 

system in the shape of machinery, fertilizers, and pesticides (Alston & Pardey, 

2014; Miedaner, 2005; Smil, 2017). Certainly, it applies to countries in differing 

severity as there is no one uniform agricultural production system and stark 

differences between countries and world regions remain. However, following 

Manheim (2020) the global food production system can be identified as a fragile 

system which is prone to systemic cascading failures (Goldin & Vogel, 2010; 

Helbing, 2013). Hence, even countries with lower industrial dependence are part of 

the increasingly connected global system and thus, likely to be subjected to the 

ripple effects of cascading failures. These properties, high industrial dependence 

and global interconnectedness, have only developed within the last 100 years (Smil, 

2017) but have quickly disseminated and profoundly and lastingly changed society. 

The Carrington event of 1859 is one of the most extreme, documented magnetic 

storms (Hayakawa et al., 2019). At the time the damages were limited to outages of 

telegraphic communication but if an event of this magnitude happened today it is 
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estimated to cause damage ranging in the trillions of dollars with long-lasting 

consequences (Schieb & Gibson, 2011) 

2.2 Loss of Industrial Civilization Scenarios 

As shown above the risk categories differ widely in their consequences for global 

food production. In this work the expected change in agricultural yield if industrial 

infrastructure is compromised is examined, therefore, the possible causes for a 

global disruption to industry are presented more in depth. The premise of all these 

risks is a global scale disruption of the electrical grid. Due to the global industry’s 

and society’s dependence on electricity, a global electrical failure would result in a 

de facto standstill of most industries and machinery. The probability for a losing 

industry catastrophe in this century is estimated at about ten percent (Mekhaldi et 

al., 2015). The three dominant potential failures include: 

High Altitude Electromagnetic Pulses (HEMP) are a consequence of nuclear 

detonations high up in the atmosphere. The altitude needed to generate damage over 

a large area prevents direct damage to humans but may instantaneously cause 

damage to most electronics. If a nuclear warhead is detonated the emitted gamma 

rays interact with the atmosphere and create an intense electromagnetic pulse 

(EMP) which spreads across large distances at the speed of light. The 

electromagnetic disruption causes overvoltage in electronics similar to a lightning 

strike but with a higher intensity (Wilson, 2008). The affected area depends on the 

power and altitude of the detonation, but Wilson (2008) describes a possible 

scenario where one detonation could affect the entire continental United States. 

Therefore, a coordinated attack with multiple warheads or the detonation of 

multiple warheads during a nuclear conflict could lead to large parts of the world 

being affected simultaneously, resulting in a global catastrophe of unprecedented 

proportion in the modern era. Especially critical pieces of infrastructure like Large 

Power Transformers (LPT) could delay recovery for years. LPT are responsible for 

transforming high voltage electricity used to send energy over long distances to low 

voltage electricity required for local distribution and consumption, and vice versa 

(Office of Electricity Delivery and Energy Reliability [OE], 2014). They are mostly 

highly customized to specific needs which makes their production time and money 

intensive: under normal conditions LPTs have lead times of 12-24 months (North 

American Electric Reliability Corporation [NERC] & U.S. Department of Energy 

[DOE], 2010) or more and cost between $2 to $7.5 million excluding transportation 
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and installation (Electrical Engineering Portal [EEP], 2013). Further LPTs are very 

heavy and the US Department of Energy worries about the ability to replace them 

under crisis conditions (OE, 2014). 

A second, similar risk is posed by Solar Storms. Solar activity during storms can 

present itself in the form of solar flares, coronal mass ejections (CME) or both. 

Solar flares are outbursts of x- and gamma rays and extreme ultraviolet radiation 

which can disrupt communication technology (National Science and Technology 

Council [NSTC], 2019). Weiss and Weiss (2019), however, rate it as a minor risk 

and rather emphasize the effect of coronal mass ejections on the American power 

grid. This type of solar activity releases supercharged plasma particles towards 

earth, creating a geomagnetic storm which acts like a natural EMP towards the 

electrical grid with potentially devastating consequences (Cooper & Sovacool, 

2011; NSTC, 2019; Talib & Mogotlhwane, 2011; Weiss & Weiss, 2019). Like 

HEMPs, CMEs can permanently damage LPTs and potentially cause power 

outages lasting for years (NSTC, 2019). 

Thirdly, globally coordinated cyber-attacks on many electrical grids or critical 

industrial infrastructure pose a threat on a global catastrophic scale. Recorded 

electrical failures, which have been attributed to targeted cyber-attacks, include a 

nine-hour power outage in up to eight regions in Ukraine in 2015 (Zetter, 2016) and 

the destruction of enrichment centrifuges in Iran in 2009/2010 by Stuxnet 

(Wikipedia, 2021). 

Apart from the specific scenarios described above, the fragile world hypothesis 

introduced by Manheim (2020) can also induce or aggravate a loss of industry 

scenario. Manheim (2020) states that the world has become increasingly more 

complex, interconnected and most importantly less resilient. The economy’s 

incentives to minimize redundancy have led to systems’ becoming progressively 

more fragile and hence more vulnerable to disruptions. According to Manheim 

(2020) a critical system’s fragility can cause global catastrophes even severe 

enough to result in human extinction. Moreover, fragile systems can significantly 

worsen the impact of one of the LoI scenarios by leading to faster and more severe 

systems’ collapses during a catastrophe. 

2.3 Resilience and agriculture 

Multiple scholars have highlighted the importance of being prepared to manage the 

consequences of GCRs and have called for mitigation and resilience efforts (S. D. 
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Baum et al., 2015; see e.g. Maher & Baum, 2013; Manheim, 2020; Sandberg, 2018). 

There have been concerns in the past that having a “back-up plan” could increase 

the possibility of man-made catastrophes like nuclear war but most agree that it is 

unlikely and rather argue that planning ahead is imperative because it could save 

billions of lives (for an in-depth discussion of ethical concerns about preparing for 

a disaster refer to chapter 9 in Denkenberger & Pearce, 2014). 

The current COVID-19 pandemic has illustrated very well what happens if a 

catastrophe hits unprepared and why resilience of critical systems is important. 

Prevention is always preferred over mitigation, but COVID demonstrates that 

prevention is not always possible even if the risk class is known and fairly well 

understood. Further, it serves as a reminder that a low probability for a risk does 

not prevent it from occurring at any given time. The consequences of the lockdowns 

show, moreover, the vulnerability of global and interconnected critical systems but 

also of society itself to disruption. Even though most countries were able to 

maintain the supply of essential goods, fear and uncertainty of consumers led to 

hoarding and panic buying which created artificial shortages and even more panic. 

The interferences in the economy and the need for COVID protection and 

containment measures have cost the global community billions of dollars and at the 

same time, up until now, 4.5 million lives (October 2021). The COVID pandemic 

makes a compelling case for preparing for catastrophes especially considering that 

in many regions essential businesses have been kept reasonably stocked and open 

throughout the heights of the pandemic. Resilience efforts for the food production 

system vary depending on the type of catastrophe. For sun-blocking scenarios like 

a supervolcano eruption this includes the exploration and preparation of alternative 

resilient foods such as leaf concentrate, mushrooms grown on logs, bacteria-

digested fibre or bacteria fed on natural gas (for an initial presentation and 

exploration of possible food sources refer to Denkenberger & Pearce, 2014). Most 

of these sources, however, depend on industrial infrastructure. Therefore, for LoI 

scenarios the adaptation of classical agricultural practices is the main component to 

ensure provision. 

In previous work Cole, Denkenberger, Griswold, Abdelkhaliq, and Pearce (2016) 

explored consequences of LoI scenarios for food security and possible mitigation 

options. Global agricultural productivity was estimated to revert to preindustrial 

levels. Strategies for increasing potential available food are presented including the 
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reduction of food waste in all stages, the recovery of plant nutrients from landfills, 

buildings and human and animal waste and the relocation of people from cities to 

the fields and from densely to sparsely populated countries. Further options to feed 

everyone encompass resilient food sources which do not require industrial 

infrastructure and the expansion of planted area into forests and non-food land uses. 

Society is highly dependent on modern agriculture as it enables most of the 

population to occupy themselves with tasks beyond food production (Coates, 2009; 

Sandberg, 2018; Smil, 2017). This remarkable surplus in food and energy 

production can only be maintained through high external inputs into the production 

system in the shape of machinery, fertilizers, and pesticides (Alston & Pardey, 

2014; Miedaner, 2005; Smil, 2017). Certainly, it applies to countries in differing 

severity as there is no one uniform agricultural production system and stark 

differences between countries and world regions remain. However, following 

Manheim (2020) the global food production system can be identified as a fragile 

system which is prone to systemic cascading failures (Goldin & Vogel, 2010; 

Helbing, 2013). Hence, even countries with lower industrial dependence are part of 

the increasingly connected global system and thus, likely to be subjected to the 

ripple effects of cascading failures. These properties, high industrial dependence 

and global interconnectedness, have only developed within the last 100 years (Smil, 

2017) but have quickly disseminated and profoundly and lastingly changed society. 

The Carrington event of 1859 is one of the most extreme, documented magnetic 

storms (Hayakawa et al., 2019). At the time the damages were limited to outages of 

telegraphic communication but if an event of this magnitude happened today it is 

estimated to cause damage ranging in the trillions of dollars with long-lasting 

consequences (Schieb & Gibson, 2011).  
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3 Methodology 

All statistical calculations were conducted in Python 3 (Version 8.10) using 

Anaconda on a Windows PC. The entire code as well as the output datasets are 

available on github (https://github.com/allfed/LosingIndustryCropYields). Input 

datasets are freely available online. Links to the resources are provided in Table 1. 

Visualizations were created in QGIS (Version 3.16.18). 

3.1 Selection of model crops and influencing factors 

The crops modelled in this thesis were chosen based on their status as staple crops 

both historically and current. Except for the Incas all ancient civilizations were 

based on cereals, including maize, rice, and wheat (Miedaner, 2005). All three crops 

are still very important for peoples’ diets today. Wheat is by far the most important 

food crop, providing 20% of daily calories and proteins worldwide (Shiferaw et al., 

2013 based on FAOSTAT data in 2012). Its status is derived from being the clearly 

dominating cereal in developed countries, counting with almost 75% of the daily 

calories and 81% of the daily proteins from cereals (Shiferaw et al., 2013). In 

developing countries rice supplies the most calories (about 45% of daily cereal 

calories), constituting a staple for more than half the world’s population (Seck, 

Diagne, Mohanty, & Wopereis, 2012). Maize is also an important food staple in 

most developing countries, but its share is substantially smaller (Branco 2020). This 

is mainly due to the stark increase in demand for maize as livestock feed which 

amounts to 63% of global maize production (Shiferaw, Prasanna, Hellin, & 

Bänziger, 2011). The last crop examined in this analysis is soybean which counts 

with the fourth largest production area after the other three crops. However, it is far 

less relevant for food intake as only 2% of the global production is directly used for 

human consumption (Hartman, West, & Herman, 2011). Like maize, the largest 

share of global production is used as livestock and aquaculture feed. Therefore, both 

crops have an enormous potential in a LoI scenario because large shares of 

production can be diverted to direct human consumption. Apart from the potential 

use shift, soybean is the only legume and the only oil crop considered in the 

analysis. Legumes could play a crucial role for nitrogen availability in the soil in 

absence of industrial fertilizers and soybean is the globally most widely produced 

legume. 

Yield-influencing factors can be divided into growth-defining, growth-limiting, and 

growth-reducing components (Rabbinge, 1993). Growth-defining factors include 

https://github.com/allfed/LosingIndustryCropYields
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climatic conditions like solar radiation, temperature, and crop characteristics. They 

can’t be changed but rather constitute the environmental boundaries for crop 

growth. Water and nutrient availability are growth-limiting factors which can be 

influenced by management decisions. Pests and diseases on the other hand reduce 

yield and can endanger whole harvests.  

Even though growth-defining factors can’t be managed and aren’t of interest in this 

analysis, climatic variables are included in the model to control for their influence 

on crop growth. Nonetheless, the focus rests on the manageable two factor classes. 

The literature offers an abundance of yield-influencing factors (Branco, 2020; 

Neumann, Verburg, Stehfest, & Müller, 2010; see e.g. Rabbinge, 1993; M. van 

Ittersum et al., 2003). The factors for the analysis at hand were chosen based on two 

selection criteria: first, factors were selected based on the key differences between 

modern and preindustrial agriculture, then factors with insufficient data availability 

(spatial data at five arcminutes resolution and global scale) were eliminated. Smil 

(2017, p. 316), Alston and Pardey (2014) and Evenson and Gollin (2003) identified 

increased inputs in machinery, fertilizer, water, and pesticides in combination with 

improved varieties as the main drivers for the steep increase in yields. For all listed 

factors except for improved varieties data availability allowed the inclusion into the 

analysis. 

3.2 Input data and Pre-Processing 

As described above, global spatial datasets were sourced for each factor as well as 

for yield under current conditions. Datasets were selected at five arcminutes 

resolution when available. The datasets used in the analysis are compiled in Table 

1. In the following the data will be presented briefly. For a detailed description of 

the methodology refer to the respective papers. 

Crop yield data for maize, rice, soybean, and wheat were taken from “SPAM2010” 

(Spatial Production Allocation Model) datasets presented by Yu et al. (2020). The 

maps are produced by disaggregating non-spatial crop statistics across farming 

systems and then allocate these values to a spatial grid using an optimization 

process based on multiple yield-influencing statistics. In the analysis the yield in kg 

per hectare per grid cell and the area in hectare per grid cell across all production 

systems are used. 
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Table 1: GLM Input datasets 

Dataset Definition 
Spatial 

resolution 

Temporal 

reference 
Source Available online 

SPAM 

 

Yield (kg/ha), 

harvested area 

(ha/cell) 

 

5 arcmin 2010 
Yu et al. 

(2020) 

https://doi.org/ 

10.7910/DVN/ PRFF8V 

 

GAEZ v4 

AEZ Factors 

Thermal regime 

class, Moisture 

regime class, 

Soil/terrain related 

classes 

 

5 arcmin 

5 arcmin 

30 arcsec 

2010 
Fischer et 

al. (2021) 

https://gaez.fao.org 

/pages/data-viewer 

 

PEST-

CHEMGRIDS 

Application rate 

(kg/ha) of 20 active 

ingredients for 10 

dominant crops and 

4 aggregated crop 

classes 

 

5 arcmin 2015 

F. Maggi, 

Tang, La 

Cecilia, and 

McBratney 

(2020) 

https://doi.org/ 

10.7927/weq9-pv30 

Global Map of 

Irrigation 

Areas - 

Version 5 

 

Area equipped for 

irrigation (% of 

total area) 

5 arcmin 2005 

Siebert, 

Henrich, 

Frenken, 

and Burke 

(2013) 

https://data.apps.fao.org/ 

map/catalog/srv/api/ 

records/f79213a0-88fd-

11da-a88f-

000d939bc5d8 

Gridded 

nitrogen and 

phosphorus 

fertilizer use 

 

N and P application 

rate (g/m²) 
0.5◦degree 

1900-

2013 

Lu and 

Tian (2016) 

https://doi.pangaea. 

de/10.1594/ 

PANGAEA.863323 

Global 

gridded 

dataset of 

manure 

nitrogen 

production 

and 

application 

 

N manure 

application 

(kg/km²) 

5 arcmin 
1860-

2014 

Zhang et al. 

(2017b) 

https://doi.pangaea. 

de/10.1594/ 

PANGAEA.871980 

A global 

gridded data 

set on tillage 

(V. 1.1) 

 

Six tillage systems 

(dominant 

system/cell) 

5 arcmin 
Around 

2005 

Porwollik, 

Rolinski, 

and Müller 

(2019) 

https://doi.org/ 

10.5880/PIK.2019.009 

 

As discussed above, only high-level climatic variables are included as the goal of 

the prediction is to assess the lack of anthropogenic inputs without climatic changes. 

The Agroecological Zones (AEZ) classification is a part of the global AEZ 

methodology (version 4) and is introduced as a framework for broad-scale analysis 

and planning (Fischer et al., 2021). The AEZ classes are defined by a combination 

of temperature regime, moisture regime and soil/terrain related classes. The 

soil/terrain related classes include an irrigation class which renders redundant 

information as the actually irrigated area per cell was incorporated into the analysis 

as a separate variable (see below). Therefore, instead of the combined AEZ classes, 

the temperature regime, the moisture regime, and the soil/terrain related classes are 

https://doi.org/10.7910/DVN/PRFF8V
https://doi.org/10.7910/DVN/PRFF8V
https://gaez.fao.org/pages/data-viewer
https://gaez.fao.org/pages/data-viewer
https://doi.org/10.7927/weq9-pv30
https://doi.org/10.7927/weq9-pv30
https://data.apps.fao.org/map/catalog/srv/api/records/f79213a0-88fd-11da-a88f-000d939bc5d8
https://data.apps.fao.org/map/catalog/srv/api/records/f79213a0-88fd-11da-a88f-000d939bc5d8
https://data.apps.fao.org/map/catalog/srv/api/records/f79213a0-88fd-11da-a88f-000d939bc5d8
https://data.apps.fao.org/map/catalog/srv/api/records/f79213a0-88fd-11da-a88f-000d939bc5d8
https://data.apps.fao.org/map/catalog/srv/api/records/f79213a0-88fd-11da-a88f-000d939bc5d8
https://doi.pangaea.de/10.1594/PANGAEA.863323
https://doi.pangaea.de/10.1594/PANGAEA.863323
https://doi.pangaea.de/10.1594/PANGAEA.863323
https://doi.pangaea.de/10.1594/PANGAEA.871980
https://doi.pangaea.de/10.1594/PANGAEA.871980
https://doi.pangaea.de/10.1594/PANGAEA.871980
https://doi.org/10.5880/PIK.2019.009
https://doi.org/10.5880/PIK.2019.009
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included as separate variables. This ensures that only the soil/terrain related classes 

contain some redundant information within the irrigation category and limits the 

number of total categories. While thermal and moisture class datasets are available 

at five arcmin resolution, the soil/terrain dataset is provided at 30 arcsec resolution. 

To fit the target resolution, it was downsampled to five arcmin. Table 2 gives an 

overview over the individual classes of the thermal regime, the moisture regime and 

the soil/terrain related conditions. 

Table 2: List of AEZ temperature regime, moisture regime and soil/terrain related classes (Fischer et al., 2021). 

Temperature Regime Classes Moisture regime classes Soil/terrain related classes 

TRC1=Tropics, lowland M1=LGP < 60days S1=Dominantly very steep terrain 

TRC2=Tropics, highland M2=LGP 60-120 days S2=Dominantly hydromorphic soils 

TRC3=Subtropics, warm M3=LGP 120-180 days S3=No or few soil/terrain limitations 

TRC4=Subtropics, moderately cool M4= LGP 180-225 days S4= Moderate soil/terrain limitations 

TRC5=Subtropics, cool M5= LGP 225-270 days S5=Severe soil/terrain limitations 

TRC6=Temperate, moderates M6= LGP 270-365 days L1=Water 

TRC7=Temperate, cool M7= LGP 365+ days. L2=Built-up/Artificial 

TRC8=Boreal/Cold, no permafrost  L3=Irrigated soils. 

TRC9=Boreal/Cold, with permafrost   

TRC10=Arctic/Very cold.   

 

For irrigation the fraction of actually irrigated cropland per cell was calculated 

based on the “Global Map of Irrigation Areas - Version 5” (Siebert et al., 2013) by 

multiplying the area equipped for irrigation in hectare per cell with the area actually 

irrigated as percentage of the area equipped for irrigation per cell. The irrigated 

areas were determined using subnational statistics derived from national census 

data or irrigation sector studies. The subnational unit values were then allocated to 

grid cells by aligning regional and local irrigation maps from various sources with 

satellite imagery on irrigation areas or other related factors if irrigation data was 

missing (Siebert et al., 2013). They report that layers for areas equipped for 

irrigation are much more reliable than layers on actually irrigated areas and water 

sources because the alignment process was only applied to the layers containing 

areas equipped for irrigation. 

The “PEST-CHEMGRID” dataset provides spatially explicit layers of the 

application rates of 20 most used active ingredients in kg per hectare per cell for six 

dominant crops and four aggregated crop classes (F. Maggi et al., 2020). It is based 

on the USGS Pesticide National Synthesis Project (USGS/PNSP) which compiled 

the application mass of all active ingredients for 48 US States. Emanating from this 
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dataset application rates for the 20 most important pesticides were calculated for 

the US in the base year of 2015. Together with 20 globally gridded environmental 

quantities the US rates were used in a polynomial extrapolation to estimate values 

for the rest of the world. Afterwards the data was corrected for local pesticide 

restrictions (EU) and the usage of GM crops and harmonized against the FAOSTAT 

country-level values. For the analysis a pesticide variable for each crop was 

compiled by summing up the active ingredients in each cell. The upper bounds of 

the range for each active ingredient were chosen to remain conservative for the 

catastrophe yield predictions. Federico Maggi, Tang, La Cecilia, and McBratney 

(2019) state that the selected ingredients account for 84.2% of pesticide usage in 

the US in 2015.  

Nitrogen (N) and phosphorus (P) fertilizer application rates were taken from the 

most recent available year of the “Half-degree gridded nitrogen and phosphorus 

fertilizer use for global agriculture production during 1900-2013” dataset compiled 

by Lu and Tian (2016). They used total country application mass provided by the 

International Fertilizer Association (IFA) and the Food and Agriculture 

Organisation (FAO) and harvested area per grid cell derived from the M3-crop data 

to calculate tabulated application rates. The tabulated was then interpolated to 

achieve a half-degree gridded distribution and subsequently harmonized with IFA 

totals (Lu & Tian, 2017). As the half degree resolution does not align with the other 

datasets, the layers were upsampled to five arcmin resolution. The unit of the 

application rates are given as g per m² which was converted to kg per hectare to 

match the unit of the crop yield. 

The “Global gridded dataset of manure nitrogen production and application” 

(Zhang et al., 2017b) supplies spatially explicit manure production and application 

rates in kg per km² per cell at five arcmin resolution. The manure production rate 

was calculated using the distribution of livestock provided by the Global Livestock 

Impact Mapping System (GLIMS), the animal-specific excretion rates from the 

Intergovernmental Panel on Climate Change (IPCC) 2006 guidelines and 

FAOSTAT data to trace yearly changes in livestock populations. The manure 

application rate was estimated based on the spatial distribution of different livestock 

management systems in different agroecological zones (Zhang et al., 2017a). As for 

the fertilizer application rate, the values were converted to kg per hectare to match 

the crop yield unit. The most recent available year was used for the analysis. 
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The N manure and N fertilizer application rate datasets presented above were 

summed up into a combined N total layer. This was done because the interest of the 

analysis lies with the effect reduced N input has on yield and not with the effect of 

N input from different sources. Moreover, it was taken as a measure to reduce the 

number of variables and possible multicollinearity between them.  

Mechanization is the only selected factor which required the use of a proxy as no 

spatially explicit data on the degree of mechanisation in agriculture was available. 

The “global gridded data set on tillage (V. 1.1.)” created by Porwollik, Rolinski, 

and Müller (2019) served as surrogate. Tillage practices were classified into six 

tillage systems according to literature findings, namely: 

• 1 = conventional annual tillage 

• 2 = traditional annual tillage 

• 3 = reduced tillage 

• 4 = Conservation Agriculture 

• 5 = rotational tillage 

• 6 = traditional rotational tillage. 

The tillage systems were allocated to gridded cropland areas at five arcmin 

resolution based on spatial datasets for crop type, water management regime, field 

size, water erosion, income, and aridity (Porwollik, Rolinski, Heinke, & Müller, 

2019). A large factor for the classification of tillage systems is the involvement of 

heavy machinery as it facilitates mixing soil in greater depth. Hence, it is possible 

to determine which systems rely on machinery for tilling and which do not by means 

of the decision tree and the characteristics of the tillage systems presented by 

Porwollik, Rolinski, Heinke, and Müller (2019). It is reasonable to assume other 

farm activities such as sowing, and harvesting are also carried out with machinery 

if tilling is mechanized. Therefore, the tillage systems are reclassified into either 0 

= non-mechanized or 1 = mechanized: tillage systems 2, 3 and 6 are classified as 0 

and systems 1, 4 and 5 as 1. Conservation agriculture is classified as mechanized 

even though tillage is reduced to almost zero because currently conservation 

agriculture is most widely adopted in North and South America and Australia 

(Kassam, Friedrich, & Derpsch, 2019) where agriculture tends to be mostly 

mechanized. The dataset provides separate layers for 42 different crop types but in 

the analysis a combined layer is used so that a larger area is covered. It is assumed 
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that regions with highly mechanized cropping systems for one crop generally do 

not farm other crops by hand or with animals. 

3.3 Statistical yield modelling 

Before the linear model can be fitted, the input data must be cleaned and pre-

processed to allow for a sensible analysis. For processing the individual datasets 

described above are imported into Python and compiled into one data frame. This 

allows rows to be eliminated on the condition of one column. The following 

operations were carried out for each crop individually. 

The values for crop yield in kg per hectare in each cell represent a varying portion 

of the specific crop’s harvested area ranging from 0.1 to 19,344.3 ha. This is a very 

large range which can influence the results of the analysis. Therefore, all rows 

containing values for harvested area below 100 ha were dropped from the data 

frame. This operation led to the deletion of 44-72% of all data points. However, 

these cells contributed only between 1.6-3.2% of the total global crop yield summed 

up over total crop specific harvested area.  

After dropping the cells with an area below 100 ha missing values in the remaining 

datasets were addressed. The pesticides and mechanisation data still contained 

many missing values. As there is no established linear dependence of pesticides and 

mechanisation on the other variables it is refrained from a linear imputation. Due 

to a high number of available data points the rows containing missing values for 

pesticides and mechanisation are dropped. 

In the N and P fertilizer columns missing values only amounted to 1-2.3% of total 

data points. Following the previous operations between 80% and 94% of the 

missing data rows were already dropped. Therefore, it was decided to fill the 

remaining cells with the forward filling method: the missing data point was 

substituted for the value of the preceding cell. 

The temperature and moisture regime columns had very few missing data points 

and as the different classes in the regimes each cover largely homogeneous zones, 

the affected cells were filled with the forward filling method as described above. 

The soil/terrain related column contained more missing values and cells classified 

as built-up/artificial (L2) or as water bodies (L1). These classes are unexpected in 

a data frame containing only cells where crops are grown on large parts of the cell 

area. This discrepancy is probably due to the downsampling process as the result 

wasn’t harmonized against a cropland dataset. Considering that the number of 



 

17 

 

missing and misclassified values ranged around the same percentage (1.6-2.2%) as 

the N and P fertilizer missing values and was also substantially diminished by 

previous operations the forward filling method was applied. 

The descriptive statistics and boxplots of the individual variables exposed the 

presence of implausible values in the N and P fertilizer, the manure, and the yield 

columns. To prevent clear outliers from skewing the relationship, all rows with 

values above the 99.9th percentile for N and P fertilizer, manure, N total and yield 

were dropped. Given the distribution of the remaining values and the values 

commonly reported in the literature, these data points are more likely to be errors 

in the input datasets than real information characterizing the relationship between 

yield and input factors. The cut-off point was chosen conservatively because the 

remaining high values for yield and nutrient application rates are unlikely but 

possible to be observed in a real-world context. 

As a first approach to detect multicollinearity, the correlations among the variables 

(excluding yield) were tested by calculating a correlation matrix based on 

Spearman’s rank correlation coefficient ρ. No correlations indicated possible 

collinearity except for the correlation between N total and P fertilizer for three out 

of four crops (maize: ρ=0.82, rice: ρ=0.91, soybean: ρ=0.53, wheat: ρ=0.87). This 

correlation is unsurprising as N fertilizer makes up a large part of N total and N and 

P fertilizer are usually applied together as compound fertilizer. To further 

investigate the presence of multicollinearity, the variance inflation factor (VIF) was 

calculated for each continuous variable and for each level of the categorical 

variables. The VIF confirmed the multicollinearity between N total and P fertilizer 

and pointed towards strong multicollinearity between the classes of the temperature 

and the moisture regime. The literature contains different threshold values for when 

the VIF indicates serious multicollinearity. The most prominent thresholds are 

specified as everything above 5 constitutes the need for action (Huang, 2014) or as 

values above 10 give reason for concern (Fox, 2002). The VIF of N total and P 

fertilizer remain below 10, depending on the crop they range from 6.2-8.6 for N 

total and from 4.5-8.9 for P fertilizer with the highest values being present in the 

rice dataset. As the values do not surpass 10 it is decided to keep both variables in 

the model as P and N availability could vary substantially in the scenario of interest. 

The VIF values for the temperature and moisture regime classes surpassed both 

thresholds by far ranking as high as 120 in some instances. Those remarkably high 
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values can be ascribed to an uneven distribution of observations among the classes. 

For the temperature regime the differences were particularly stark as the coldest 

three climate classes counted with very low numbers of observations. To resolve 

the issue class TRC7-TRC10 were combined into a new TRC7 class encompassing 

Temperate cool, Boreal and Arctic temperatures. The uneven distribution of 

observations in the moisture regime was addressed by fusing the two lowest (M1 

and M2) and the two highest classes (M6 and M7) into one new class each: M1 = 

LGP < 120 days and M5 = LGP 270+ days. Some stronger collinearity remained in 

the rice dataset which could have been addressed by combining more classes in the 

temperature regime. However, this was not implemented as the distribution of 

classes varied widely between the different crops and it would have been difficult 

to find a combination which improved rice while not introducing new collinearity 

into other datasets. Adding the variables consecutively to the model did not show 

any abnormalities in the standard errors, p values or the root mean gamma deviance 

(RMGD).  

A split-sample approach is applied to validate the model. Prior to fitting the model, 

20% of the pre-processed data are randomly selected. This sample is used for 

validation while the model is calibrated on the remaining 80% of the data points. 

As the dependent variable cannot assume negative values, the distribution of the 

data points is strongly right skewed for all crops and the residual are non-normally 

distributed, the assumptions for a classic multiple regression on a normal 

distribution are violated. Therefore, a generalized linear model (GLM) based on a 

gamma distribution is fitted to the data. The link function is assumed to be the 

natural logarithm. The model is specified as followed: 

𝑌 ~ 𝐺𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒, 𝑠𝑐𝑎𝑙𝑒) 

where: 

𝑔(𝑠ℎ𝑎𝑝𝑒) = ln(𝑠ℎ𝑎𝑝𝑒) = f(𝑋𝑖; b) = 𝑏0 + 𝑏1/𝑥𝑖 

The model is fitted with a simple linear relationship and no interactions. The 

categorical variables are coded as dummies. To assess model fit McFadden’s ρ² is 

calculated. The RMDG serves as a measure for model transportability. The 

significance level is set at α = 5%. 

3.4 Yield prediction 

Crop yields are predicted for a worst case LoI scenario. It is assumed that a 

catastrophe disables power supply globally and effectively inhibits industrial 
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production, communication, transportation, and all other services relying on 

electricity. The electrical outage is expected to be immediate but the effects on 

agricultural production are likely buffered by stocks in storage. Hence, the period 

following the catastrophe is divided into two phases: phase 1 comprises the first 

year after the catastrophe where stocks are still available while phase 2 starts in 

year 2 after stocks are depleted and the consequences of losing electrical 

infrastructure take full effect. The datasets of the independent variables used in the 

calibration of the model are modified for the predictions according to the 

assumptions for each phase as outlined above. 

Phase 1 assumes sufficient stocks in above-ground fossil fuels to fully power 

agricultural machinery for another year. The International Energy Agency (IEA, 

2020) states the annual demand of the agricultural industry in oil products at 

111,062 thousand tons of oil equivalent (ktoe) in 2018. Available above-ground 

fuel in a LoI catastrophe was estimated at 319,000 ktoe, encompassing 172,000 ktoe 

of gasoline and 147,000 ktoe of diesel, by Cole et al. (2016). Considering that most 

agricultural machinery runs on diesel, the estimated stocks last for about a year 

while leaving the gasoline for critical transportation. Thus, the mechanisation input 

dataset remains unchanged for phase 1. 

All following calculations for the phase 1 input datasets are carried out under 

consideration of all cells where harvested area for the respective crop is greater than 

zero. Even though a large percentage of these cells were not considered for model 

calibration and are not contributing to the predictions, these areas would still need 

agricultural inputs in a catastrophic scenario. To account for this, all cells are 

included in the distribution of available stocks. Only values above the 99.9th 

percentile of the respective variable are excluded as they do not represent 

reasonable data points. 

N and P fertilizer application rates for phase 1 are calculated based on the annual 

global surplus for each nutrient reported by the Food and Agriculture Organization 

of the United Nations (2017). They project a surplus of 14,477 thousand t of 

nitrogen and 4,142 thousand t of phosphorus in 2020. In a first step the amount of 

the nutrient applied in each cell is calculated as a fraction of the total amount of the 

nutrient summed over the crop-specific harvested area with: 

𝑁𝑓𝑟𝑎𝑐 =
𝑁𝑓𝑒𝑟𝑡 × 𝐴𝐶

∑ 𝑁𝑓𝑒𝑟𝑡 × 𝐴𝐶
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where Nfert is the application rate of the nutrient in kg per ha per cell and AC is the 

crop-specific harvested area in ha per cell. Then, the new total amount of the 

nutrient available for the specific crop in phase 1 is calculated based on the surplus 

reported by the FAO (2017). 

𝑁𝑇𝐶 =
∑ 𝑁𝑓𝑒𝑟𝑡 × 𝐴𝐶

𝑇𝑁𝐺
× 𝑇𝑁𝐺1 

where TNG is the total amount of the nutrient projected to be used for crop 

fertilisation in 2020 and TNG1 is the projected nutrient surplus in 2020. The total 

amount of nitrogen used for crop fertilization is projected to be 118,763 thousand t 

and the amount of phosphorus is estimated at 45,858 thousand t in 2020 (FAO, 

2017). Lastly the new total is allocated back to the cells based on Nfrac: 

𝑁𝑓𝑒𝑟𝑡1 =
𝑁𝑇𝐶 × 𝑁𝑓𝑟𝑎𝑐

𝐴𝐶
 

The pesticide application rates for phase 1 are calculated with the same approach 

as the fertilizer application rates. However, no data was available on the surplus of 

pesticides generated in one year. Therefore, it was assumed that the surplus’ share 

of global pesticide production was in the same range as the share of the nutrients’ 

surplus in the global nutrient production. Equation 2 and 4 remain unchanged but 

the new total of pesticides available for a specific crop in phase 1 is calculated as 

follows: 

𝑃𝑇𝐶 =
∑ 𝑃𝐻 × 𝐴𝐶

𝑇𝑃𝐺
× 𝑇𝑃𝐺 ×

𝑇𝑛𝐺1

𝑇𝑛𝐺
+

𝑇𝑝𝐺1

𝑇𝑝𝐺

2
 

where PH is the pesticide application rate in kg per hectare per cell, TPG is the total 

amount of pesticides used for agricultural purposes in 2019 (FAOSTAT, 2021b) 

and TnG1, TnG, TpG1 and TpG referring to the totals defined above for nitrogen and 

phosphorus respectively. 

In phase 2 all stocks are assumed to be depleted, hence, mechanisation2, nfert2, pfert2 

and PH2 are set to zero. 

Manure application rates are expected to be the same for phase 1 and 2 as they are 

dependent on the available livestock. It is assumed that the population would switch 

to a mostly vegan diet to use the calories which can be produced in the most efficient 

way possible. Therefore, only draft animals like horses, buffaloes and cows will be 

kept and fed on agricultural residues and roughage. For this analysis only cows will 

be considered as the calculations are based on the numbers provided by Zhang et 
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al. (2017a) who didn’t include horses and buffaloes as they currently constitute only 

a very small percentage of the global livestock population and are even less 

important for manure production and application in modern agricultural systems. 

To calculate new manure application rates, the labour demand in each grid cell is 

assessed in terms of needed cows per grid cell by dividing the harvested area in 

each cell by the area which can be worked by one cow (ha per cow). Prak (2006) 

reported 7.4 hectare per draft animal as a typical working capacity. Considering that 

modern cattle are not bred to work this value can be expected to be considerably 

lower. To be conservative in terms of manure availability 5 hectare per cow were 

used for the calculations. The next step was to calculate the excretion rate of one 

cow. Zhang et al. (2017a) provided the total amount of manure produced in 2014 

which amounts to 131,000 thousand t of N and the share of the manure produced 

by cattle, namely 43.7%. (FAOSTAT, 2021a) reported 1.44 billion heads of cattle 

in 2014. Multiplying the total amount of manure with the fraction attributed to cattle 

and dividing the result by the heads of cattle in that year rendered an excretion rate 

of ~ 40 kg per cow per year. In the last step the new crop specific N manure 

application rate was computed by: 

𝑀𝑛𝐶 =
39.77 × 𝐶𝐶

𝐴𝐶
 

where CC is the crop specific number of cows in each grid cell. 

For phase 1 MnC was combined with nfert1 into ntot1. In phase 2 the N from manure 

is the only source of N left so it is taken as the sole input. 

As with manure, irrigation as a fraction of the cropland in a cell which is actually 

irrigated is not affected by first year stocks and therefore the same values are used 

for phase 1 and phase 2. A sharp reduction in actually irrigated area is expected as 

large part of the irrigation infrastructure are dependent on electricity. To obtain the 

fraction of irrigated area, which is reliant on electricity, Rivers (2021) combined 

the information on the source of the irrigation water (surface or groundwater or 

other) with country-level statistics. For an in-depth description of the methodology 

refer to Rivers (2021). The fraction of actually irrigated cropland in a LoI scenario 

was calculated as follows: 

𝐼𝐿𝑜𝐼 =  𝐼𝐴𝐶 × (1 − 𝐼𝑅𝐶) 

where IAC is the currently irrigated fraction of cropland in each cell and IRC is the 

fraction of currently irrigated area which is reliant on electricity in each cell. 
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The datasets comprising the input variables for phases 1 and 2 are fed into the model 

specified above to predict the crop-specific yields under LoI conditions. The 

predicted values are used to calculate the crop-specific yield change rate for each 

cell: 

𝑌𝐶𝑃𝐶 =
(𝑌𝑃𝐶 − 𝑌𝐶)

𝑌𝐶
 

where YPC is the crop-specific predicted yield in the respective phase and YC is the 

crop-specific yield around 2010 taken from the SPAM2010 dataset. Values above 

zero were set to zero as substantial yield increase in an LoI scenario is very unlikely. 

Rather, the positive values are taken as an indication for stable yields unaffected by 

catastrophic circumstances. For the predicted yield and change rate values in each 

phase descriptive statistics measures were computed, namely the range and the 

weighted mean. The yield was weighted according to the corresponding harvested 

area while the change rate was weighted according to the yield in 2010. The mean 

for the change rates was determined in two different ways. First the mean is based 

on the predicted values while the second approach took the dataset with the 

substituted zeros as the computing basis. 

Additionally, the overall reduction in yield and in total crop production in 

comparison to the 2010 value was calculated. 

The prediction results were saved as five arcmin ASCII files and visualized in QGIS 

(Version 3.16.18). To provide a broader overview of large trends, the results were 

moreover downsampled to a two-degree resolution. 
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4 Results 

4.1 Fitted Gamma GLM 

The generalized linear model was fitted for all crops based on the gamma 

distribution and on the same set of variables which were carefully selected based 

on the literature. The final model for each crop includes the explanatory variables 

presented in Table 3. The first class of temperature regime, moisture regime and the 

soil/terrain related conditions are not listed, as the categorical variables were coded 

as dummies to be included into the mode. Therefore, the classes TRC1=Tropics, 

lowland, M1=LGP<120 days and S1=Dominantly very steep terrain are implicit in 

the intercept. In other words, if all other classes of a categorical variable are coded 

as zero, it represents a hypothetical 1 for the dropped class. As a result, the intercept 

is the expected value for crop yield without any external nutrient, water or pesticides 

inputs, without the use of machinery in a tropical lowland climate with a growing 

period length below 120 days and in dominantly very steep terrain. The values for 

the intercepts are similar for all four crops ranging from 605 to 751. Considering 

that most coefficients have positive impacts on the expected yield, the model cannot 

capture low yield values very well. All coefficients except for one were significant 

with α=5%. Only in the model for wheat TRC2 was not significantly different from 

TRC1. This is probably due to a low number of observations in class TRC2 for 

wheat. The two classes could have been combined into one but were kept separate 

to ensure consistency with the models for maize, rice, and soybean. 

As described in chapter 3 the models were calibrated with 80% of the data points 

while the remaining 20% were used for validation. Table 3 contains the values for 

McFadden’s ρ² and the Root Mean Gamma Deviance (RMGD) for each crop 

calculated with (1) the calibration and (2) the validation data points. The validation 

data calculations supported the estimates based on the calibration data points. The 

validated ρ²-value varied strongly across the different crops: the highest agreement 

between data and model was found for maize with a ρ² of 0.47. The GLM for rice 

had a ρ² of 0.41, for the wheat model it was 0.37 and the lowest value was calculated 

for soybean with 0.34. Still, all values suggest that the models fit the data well. 

According to McFadden (1977, p. 35), “…, values of .2 to .4 for ρ² represent an 

excellent fit”. The RMGD was calculated as a measure of model transportability. 

The lowest error was computed for soybean with 0.39, followed by rice with 0.49, 

then wheat with 0.52 and the highest error was found for the maize GLM with 0.59.
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Table 3: GLM coefficients of all variables with 95% confidence interval on link and response scale and corresponding p-value for each crop. McFadden’s ρ² as measure for goodness of fit and Root Mean 

Gamma Variance as measure for model transportability calculated on the calibration and the validation data points. Variables:TRC2=Tropics, highlands; TRC3=Subtropics, warm; TRC4=Subtropics, mod. 

cool; TRC5=Subtropics, cool; TRC6=Temperate, moderate; TRC7=Temperate, cool – Arctic; M2=LGP 120-180 days; M3=LGP 180-225 days; M4=LGP 225-270 days; M5=LGP 270+ days; S2=hydro 

soils; S3=few limitations; S4=mod. limitations; S5=severe limitations; L3=irrigated soils; TRC1, M1 and S1 are implicit in the intercept. 

  Maize (n=195,361) Rice (ntot=93,993) Soybean (n=77,796) Wheat (n=210,284) 

 Calibration 

(ncal=156,289) 

Validation 

(nval=39,072) 

Calibration 

(ncal=75,194) 

Validation 

(nval=18,779) 

Calibration 

(ncal=62,237) 

Validation 

(nval=15,559) 

Calibration 

(ncal=168,227) 

Validation 

(nval=42,257) 

McFadden's 

ρ² 
 

0.4794 0.4672 0.41 0.4114 0.3449 0.3431 0.3778 0.3707 

Root Mean 

Gamma 

Deviance 

0.5828 0.5897 0.4954 0.4913 0.3828 0.3863 0.5194 0.5228 

 

 

Coefficients 

(link scale) ± 

95% confidence 

interval  

Odds ratios 

(response 

scale) 

p-value 

Coefficients 

(link scale) ± 

95% confidence 

interval 

Odds ratios 

(response 

scale) 

p-value 

Coefficients 

(link scale) ± 

95% confidence 

interval 

Odds ratios 

(response 

scale) 

p-value 

Coefficients 

(link scale) ± 

95% confidence 

interval 

Odds ratios 

(response 

scale) 

p-value 

Intercept 6.622 ± 0.023 751.34 0.000 7.385 ± 0.025 1611.61 0.000 6.404 ± 0.043 604.49 0.000 6.501 ± 0.025 665.80 0.000 

TRC2 0.145 ± 0.013 1.16 0.000 0.290 ± 0.027 1.33 0.000 0.158 ± 0.022 1.17 0.000 -0.010 ± 0.023 0.99 0.417 

TRC3 0.094 ± 0.012 1.10 0.000 -0.135 ± 0.011 0.87 0.000 -0.040 ± 0.013 0.96 0.000 0.221 ± 0.017 1.25 0.000 

TRC4 0.55 ± 0.012 1.73 0.000 0.294 ± 0.014 1.34 0.000 0.069 ± 0.013 1.07 0.000 -0.106 ± 0.017 0.90 0.000 

TRC5 0.674 ± 0.015 1.96 0.000 0.261 ± 0.022 1.29 0.000 0.140 ± 0.021 1.15 0.000 -0.126 ± 0.018 0.88 0.000 

TRC6 0.696 ± 0.011 2.01 0.000 0.348 ± 0.016 1.41 0.000 0.238 ± 0.012 1.26 0.000 0.175 ± 0.017 1.19 0.000 

TRC7 0.745 ± 0.011 2.11 0.000 0.343 ± 0.025 1.4 0.000 0.075 ± 0.014 1.08 0.000 0.063 ± 0.017 1.06 0.000 

M2 -0.099 ± 0.013 0.91 0.000 -0.082 ± 0.016 0.92 0.000 0.225 ± 0.023 1.25 0.000 0.026 ± 0.008 1.03 0.000 

M3 0.060 ± 0.013 1.06 0.000 -0.046 ± 0.017 0.95 0.000 0.297 ± 0.023 1.35 0.000 0.286 ± 0.008 1.33 0.000 

M4 0.272 ± 0.013 1.31 0.000 -0.039 ± 0.018 0.96 0.000 0.453 ± 0.023 1.57 0.000 0.459 ± 0.010 1.58 0.000 

M5 0.256 ± 0.014 1.29 0.000 0.108 ± 0.016 1.11 0.000 0.451 ± 0.024 1.57 0.000 0.548 ± 0.010 1.73 0.000 

S2 0.924 ± 0.027 2.52 0.000 0.503 ± 0.029 1.65 0.000 0.490 ± 0.039 1.63 0.000 0.629 ± 0.023 1.88 0.000 

S3 0.909 ± 0.020 2.48 0.000 0.479 ± 0.022 1.61 0.000 0.562 ± 0.036 1.75 0.000 0.645 ± 0.019 1.91 0.000 

S4 0.651 ± 0.019 1.92 0.000 0.346 ± 0.020 1.41 0.000 0.401 ± 0.035 1.49 0.000 0.496 ± 0.019 1.64 0.000 

S5 0.389 ± 0.022 1.48 0.000 0.057 ± 0.022 1.05 0.000 0.164 ± 0.037 1.17 0.000 0.281 ± 0.022 1.33 0.000 

L3 0.956 ± 0.022 2.60 0.000 0.433 ± 0.021 1.54 0.000 0.520 ± 0.037 1.68 0.000 0.734 ± 0.020 2.08 0.000 

n_total -0.001 ± 0.0001 1.00 0.000 0.001 ± 0.0001 1 0.000 -0.002 ± 0.0003 0.99 0.000 0.003 ± 0.0002 1.00 0.000 

p_fertilizer 0.011 ± 0.001 1.01 0.000 0.005 ± 0.001 1 0.000 0.013 ± 0.0001 1.01 0.000 -0.014± 0.0008 0.99 0.000 

pesticides_H 0.002 ± 0.002 1.00 0.016 -0.014 ± 0.002 0.98 0.000 -0.027 ± 0.003 0.97 0.000 0.386 ± 0.013 1.47 0.000 

irrigation_tot 0.477 ± 0.015 1.61 0.000 0.470 ± 0.013 1.59 0.000 0.199 ± 0.017 1.22 0.000 0.290 ± 0.008 1.34 0.000 

mechanized 0.386 ± 0.007 1.47 0.000 0.149 ± 0.009 1.16 0.000 0.375 ± 0.012 1.46 0.000 0.279 ± 0.009 1.32 0.000 
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4.2 Mean predicted yield and crop production changes in a LoI scenario 

Descriptive statistics of the predicted yield for each crop in comparison to 

SPAM2010 crop yields are presented in Table 4. The calculations for the 

SPAM2010 statistics are based on the cells of the dataset which were used in the 

analysis excluding all cells as described in chapter 3. Mean yields were computed 

by weighting each value according to the harvested area in that cell. 

In a LoI scenario predicted yields vary substantially between phase 1 and 2 and 

between crops. For phase 1 yields are predicted to reduce between 10-28%, with 

soybean counting with the lowest expected reduction of 10% and wheat and rice 

yields both shrinking by 28%. Phase 2, namely the loss of any industrially produced 

inputs to agriculture, affected crop yields to a varying extent. While soybean yields 

were least diminished in phase 1, in phase 2 they dropped by 36% in comparison to 

SPAM2010 yields. 

Table 4: Descriptive statistics of the prediction results for phase 1 and 2 and for the respective SPAM2010 

yield data for each crop. SPAM2010 characteristics are based solely on data points used in the prediction 

analysis. 

 
Maize 

(n=195,361) 

Rice 

(n=93,993) 

Soybean 

(n=77,796) 

Wheat 

(n=210,284) 

Area weighted mean SPAM2010 in 

kg/ha 
5521 4394 2507 3091 

Area weighted mean Phase 1 in 

kg/ha (positive rates set to zero) 
4412 (3920) 3149 (2944) 2257 (2081) 2232 (2032) 

Area weighted mean Phase 2 in 

kg/ha (positive rates set to zero) 
3300 (3037) 2955 (2726) 1601 (1534) 1773 (1641) 

Total Production SPAM2010 

(million t) 
762.5 622.4 223.8 597.3 

Total Production Phase 1 in 

million t (positive rates set to zero) 
609.4 (541) 446.2 (415.5) 201.5 (186.1) 431.4 (388.4) 

Total Production Phase 2 in 

million t (positive rates set to zero) 
455.9 (416.3) 418.8 (393.5) 142.9 (138.3) 342.6 (322.3) 

Projected reduction Phase 1 (%) 20 28 10 28 

Projected reduction Phase 2 (%) 40 33 36 43 

Projected reduction Phase 1 

(positive rates set to zero) (%) 
29 33 17 35 

Projected reduction Phase 2 

(positive rates set to zero) (%) 
45 37 38 46 

Yield range SPAM2010 (kg/ha) 27 - 18,744 111 - 16,053 55 - 5,882 74 – 12,899 

Yield range GLM fitted values 

(kg/ha) 
680 - 16,940 1,388 - 12,166 709 - 4,430 611 - 12,849 

Yield range Phase 1 in kg/ha 

(positive rates set to zero) 

675 - 12,745 

(27 – 11,838) 

1,360 - 7,765 

(111 – 7,506) 

675 – 3,509 

(55 - 3,251)  

606 - 5,525 

(74 – 5,122) 

Yield range Phase 2 in kg/ha 

(positive rates set to zero) 

675 - 8,640 

(27 – 8,231) 

1,355 - 6,587 

(111 - 6,320) 

675 – 2,443 

(55 – 2,443) 

602 – 4,311 

(74 - 4,311) 
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This equates to an increased reduction of 26% of the SPAM2010 yields. Rice yields 

were projected to decrease by 33% in phase 2 but unlike soybean yields, rice yields 

were already greatly lowered in phase 1. Wheat yields are estimated to face the 

greatest overall reduction of 43% of the SPAM2010 yields. The predicted yield loss 

for maize doubled from 20% in phase 1 to 40% in phase 2 compared to SPAM2010 

yields. Overall, a full LoI scenario in phase 2 was projected to generate a yield loss 

of at least one third of the yield prior to the catastrophe (Table 4). 

The values described above represent the model predictions including positive and 

negative changes in individual cells. It is likely, however, that most of the positive 

change rates estimated by the models are attributable to the GLMs not capturing the 

lowest SPAM2010 yield values. Therefore, the effect of the positive change rates 

on the overall yield loss is tested by calculating the mean change rate for each crop 

in phase 1 and 2 with the positive change rates set to zero. This leads to higher yield 

losses, but the effect varies across crops and is substantially stronger in phase 1. In 

phase 1 almost double the number of cells count with positive change rates in 

comparison to phase 2. The additional reductions range from 5% for rice up to 9% 

for maize yields. Yields decreased by an additional 2-5% in phase 2, leading to the 

largest overall reduction increasing to 46% for wheat yields. Discounting positive 

changes from the projections results in rice and wheat yields already dropping by 

one third in phase 1 and the projected losses for maize and wheat yields in phase 2 

almost amounting to half of the SPAM2010 crop yields. Maize yield predictions 

were affected most by the changed approach. 

To further investigate the properties of the GLMs in comparison to the SPAM2010 

dataset and across the two phases with differing severity, the value ranges of 

SPAM2010 yields and the GLM estimates for current, phase 1 and phase 2 

conditions were computed for each crop (Table 4). Table 4 shows that the GLMs in 

all instances predict a minimum value at least eight times higher than in the original 

dataset. Only if the positive change rates are set to zero, the minimum value aligns 

with the minimum of the SPAM2010 crop yields. This confirms the assumption 

that the models do not fit the small data points very well. Among the model 

estimates for different conditions minimum values barely differ within one crop 

which suggests that lower yields are only marginally negatively affected by the LoI 

consequences. Minimum values were also similar between maize, soybean, and 

wheat. Rice counted with by far the highest minimum value while the mean of rice 
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Figure 2: Yield change rate in Phase 1 for each crop at 5 arcmin resolution. Positive change rates are set to zero. 
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Figure 3: Yield change rate in Phase 2 for each crop at 5 arcmin resolution. Positive change rates are set to zero. 
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yield ranges lower than maize yield men. The maximum values, on the other hand, 

were estimated to reduce substantially - as expected - under worsening LoI 

conditions. However, modelling current conditions with the GLMs also resulted in 

a considerably lower maximum value, even though the largest values of the 

SPAM2010 data were dropped before calculating the statistics. The generalized 

linear models estimate a more moderate range of values than the range found in the 

SPAM2010 data. 

4.3 Gridded predicted yield change rates in a LoI scenario 

All gridded yield change results are presented with the positive change rates set to 

zero for clarity. Figure 2 and Figure 3 show the global spatial distribution of yield 

change rates for each crop at 5 arcmin resolution in phase 1 (Figure 2) and phase 2 

(Figure 3). The gridded presentation allows to identify hotspots which are projected 

to be strongly affected in a LoI scenario. Figure 3 is used for the hotspot 

identification as phase 2 represents the full impact of losing industrial inputs and 

Figure 2 shows that the same regions are affected in phase 1 with less overall 

severity. The GLM predicted a severe reduction of maize yields in North and South 

America, Europe, South Africa, Sambia, the Nile region and Southern India. China, 

Indonesia, and the remaining parts of India showed a highly heterogenous 

landscape, alternating between strongly and barely affected regions. The same 

heterogeneity can be found in India and China for soybean yields, in Indonesia for 

rice yields and in Central China, the Southwestern Caspian region and Ethiopia for 

wheat yields. Yield loss hotspots for rice were projected to be in China, India, 

Southern Brazil, the Mississippi region, and the European rice-growing regions. 

Soybean yields were estimated to be diminished most in North and South America 

and Central Europe. For wheat highest yield decrease was predicted to occur in 

Europe, North America, South Africa, Northern Argentina, Northern India, 

Northeastern China, Southern Australia, and the Nile Region. Over all crops yield 

loss hotspots largely aligned and differed mostly due to differing distribution of 

growing area. Globally the areas with the largest negative impacts on yields were 

projected to be North and South America, Europe, China, India, and Indonesia. 

Additionally, both figures show that the hotspot regions have higher projected yield 

losses than the mean predicted reduction presented above. In Phase 1 most critical 

regions denoted yield reductions above 25% and a large part above 37.5%. In 

Phase 2 for most hotspots yields were reduced more than half and in the most 
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severely affected regions, namely South America for maize and rice and Central 

Europe for wheat yields declined by more than 62.5%. 

Figure 5 and Figure 4 show the same data as Figure 2 and Figure 3 but in 2-degree 

resolution. To create these maps, the GLM results were averaged over 2-degree grid 

cells. In an analysis testing different resolutions, it was found that averaging the 

estimated values over 2-degree grid cells yields a better agreement between the 

SPAM2010 crop yields and the model predictions (McFadden’s ρ² between 0.35 

(soybean) and 0.52 (maize)). By applying this approach model quirks are averaged 

out to some degree, giving a clearer overview over trends. Moreover, the approach 

de facto extrapolates the results to a larger area. The extrapolation was not validated 

but given the largely homogenous distribution of both the strongly and the barely 

affected regions it seems to be a reasonable assumption. 
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Figure 5: Yield change rate in Phase 1 for each crop at 2-degree resolution. Positive change rates are set to zero. 

Figure 4: Yield change rate in Phase 2 for each crop at 2-degree resolution. Positive change rates are set to zero. 
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5 Discussion 

Following the first evaluations of the possible effects of a LoI scenario on 

agriculture by Cole et al. (2016) this work proposes a formal modelling approach 

to investigate the issue, adds a spatial component to the analysis and examines LoI 

consequences on agriculture in two different phases. Cole et al. (2016) assume 

preindustrial agricultural productivity in a LoI scenario which corresponds to a 60% 

drop from current yield levels. The results at hand suggest that overall yields would 

only drop between 33% and 46%. Nevertheless, while Cole et al. (2016) describe 

their estimate as conservative, the results presented above can be considered 

optimistic. Moreover, individual regions are projected to suffer much larger cuts in 

productivity firmly surpassing 50% in most cases and ranging up to 90%. 

Therefore, the predictions should be understood as a first crop-specific and spatially 

explicit estimate on how strongly yields could be affected by a catastrophic scenario 

which inhibits global industry and trade. The general trends visible in the prediction 

results are reliable and can be used as a guideline going forward. However, it is not 

recommended to use the generated datasets in regional analysis or for detailed 

response planning. Achieving the necessary level of model accuracy for these 

applications was beyond the scope of this thesis. In the following the suitability of 

the modelling approach for the prediction of yields in catastrophic scenarios is 

discussed and potential avenues for the improvement of model accuracy are set 

forth. 

5.1 GLM related limitations and improvements 

Input data: 

The Input datasets for fitting the GLM were carefully selected, and each represent 

a highly significant influence factor as was confirmed by the model results. The 

high resolution of five arcminutes was chosen to sufficiently capture the 

heterogeneity of agricultural production. However, the high resolution, the spatial 

nature, and the specifics of the data lead to numerous challenges. First and foremost, 

the datasets do not actually showcase the real distribution of the specific variables 

but rather a statistical approximation of the real distribution. Spatial downsampling 

techniques introduce high levels of uncertainty into the dataset which are 

consequently replicated in the analysis at hand. Uncertainty itself is inevitable in 

modelling, however, modelling based on multiple different datasets leads to 

multiple types of uncertainty shaping the model. The datasets used in this analysis 
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were not harmonized against each other and standardization was only exercised by 

some on the country level against FAOSTAT data. In consequence the layers do 

not necessarily align: they differ in the extent covered and in the spatial distribution 

of the values. Discrepancies in the extent result in missing data points in the 

combined dataset used in the analysis. Especially the variables mechanized and 

pesticides covered substantially less cells than the remaining layers. Due to a lack 

of reliable data on explaining variables to estimate the missing values for either 

factor and the number of missing points being too large for less sophisticated 

interpolation methods, the rows containing missing values were dropped. The 

dropped values coincide for the most part with cells containing small areas of the 

respective crop as can be seen in   

Figure 6. The grey areas represent the cells which contain cropland for the specific 

crop but were excluded from the analysis. By far the largest number of the excluded 

cells contain less than 100 ha of harvested crop area. Hence, even though many 

cells were dropped before calibrating the model, the remaining data still represent 

the main growing regions for each crop. The second consequence of malalignment 

between input datasets has more severe effects on the model accuracy. If the spatial 

distribution of the values does not align across datasets the underlying relationship 

between dependent and independent variables, which constitutes the very subject 

of the analysis, is possibly misrepresented. This effect can be observed in the 

characteristics of the outliers of each individual dataset, depicted in Table 5. 

According to what is known about the relationship between yield and agricultural 

inputs, it is expected that high yields coincide with high values for the explaining 

variables. In terms of the outliers, it would be anticipated that most outliers lie in 

the same cell: e.g., if six datasets each contain five outliers, the expected number of 

affected cells would also be five and not thirty. Table 5, however, shows that the 

number of cells containing outliers is almost as high the total number of outlier 

values because the highest value found in the N fertilizer dataset does not pertain 

to the same grid cell as the highest value for yield. The outliers are another result 

of the special characteristics of the input datasets. As described in chapter 3 all 

values above the 99.9th percentile were considered as outliers. This distinction was 

made because all continuous input datasets contained unusually high values which 

were unrealistic like yields of 60 t/ha and N fertilizer application rates of more than 

4 t/ha. The exceptional nature of these data points is illustrated by comparing the 
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mean of the outliers with the mean of the remaining cells: in most cases it is at least 

four times, in many cases ten times higher. Even though there is reason to assume 

that more values on both ends of the scale, albeit feasible, can be attributed to 

calculation errors or relics of the downsampling approach this could not be 

validated and therefore, it was refrained from excluding more values. 

Due to the spatial nature of the analyzed data the yield value in each cell does not 

simply represent one unit but is rather tied to the area in each cell where the crop is 

Table 5: Characteristics of the 99.9th percentile outliers in each of the continuous input datasets and the 

combined nitrogen variable. For comparison the mean of the remaining data points is also computed. The last 

column shows the number of rows in the analysis dataset containing outliers and the sum of the count for each 

crop. 

Crop Variable Count 
Min 
(kg/ha) 

Max 
(kg/ha) 

Mean 
(kg/ha) 

Mean of 
remaining 
cells (kg/ha) 

total 
number of 
rows 
(outliers) 

Maize 

Yield  199 18,746 43,447 22,056 5,520 

2,615 
(2,937) 

N fertilizer 194 370 4,447 1532 115 

P fertilizer 165 54 494 202 19 

N Manure 1981 44 1,209 73 7 

N combined 199 391 4,579 1,546 122 

Pesticides 199 12 12.3 11.95 3.8 

Wheat 

Yield  214 12,904 2,3011 14,873 2,929 

2,901 
(3,188) 

N fertilizer 199 352 385 365 83 

P fertilizer 214 52 126 94 12 

N Manure 2133 43 1,093 65 5.2 

N combined 214 380 1,099 414 88 

Pesticides 214 1.8 4 1.9 0.5 

Soybean 

Yield  79 5,926 11,768 7,601 2,280 

1,056 
(1,178) 

N fertilizer 75 364 395 370 97 

P fertilizer 76 51 57 53 21 

N Manure 790 37 245 51 5.1 

N combined 79 376 483 395 102 

Pesticides 79 6.5 7 6.7 3.3 

Rice 

Yield  96 16,087 52,018 22,649 4,051 

1,271 
(1,413) 

N fertilizer 82 395 4,447 939 119 

P fertilizer 89 56 494 111 18 

N Manure 954 35 642 57 5.2 

N combined 96 397 4,447 871 124 

Pesticides 96 10.8 12 11 2.3 
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harvested. As a result, yield values in cells with large harvested areas have a higher 

importance for the overall crop yield production than values with smaller harvested 

areas. A standard GLM, however, attributes the same weight to each data point, 

assuming that each data point stands for one observation. This leads to yields in 

small areas having a disproportionately large influence on the model relative to the 

area they cover while yields on large areas carry proportionately less weight. To 

address this imbalance by narrowing the range of the harvested area values, cells 

containing less than 100 ha of harvested area were excluded from the modelling 

dataset.   

Figure 6 depicts the spatial distribution of all cells not considered in the analysis in 

grey. Noticeably, a large portion of these cells is located in Africa. This coincides 

with the uncertainty reported by Yu et al. (2020) as they estimate that the 

uncertainty of the SPAM2010 dataset is highest in Africa. Apart from the 

cumulation in African countries, the dropped cells concentrate outside of the main 

growing regions for the respective crop. For rice and soybean this includes Europe 

and Central America and for rice also South America. Maize and wheat overall 

count with less and smaller clusters of excluded cells as both have major growing 

zones in most regions of the world.  

  

Figure 6: Yield change rate in phase 1 at 5 arcmin resolution. Harvested area for each crop. 
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Solely the maize GLM was calibrated on sufficient points for that region to yield 

viable results for most of the African continent.  

Working with spatial data can also lead to effects of autocorrelation among data 

points. Autocorrelation refers to values being similar or the same due to geographic 

proximity. In high resolution datasets which are derived from statistical 

interpolation the effect is enhanced as more cells in close vicinity to each other tend 

to contain the same value. Considering that classical generalized linear models are 

not equipped to handle this relationship, autocorrelation can skew model results, 

especially in combination with misaligned data sets. As it is difficult to account for 

autocorrelation in a standard GLM, possible ways to address it are discussed in the 

next section about the methodological approach. 

Methodological approach: 

The modelling of crop growth and crop yields has a long history and extensive 

literature on crop modelling approaches exist (for an overview see Van Ittersum 

and Donatelli 2003). Generally, climate impacts on crop yields are assessed by 

using process-base models (Olesen and Bindi 2002, Easterling et al. 2007) and there 

has been a work on estimating the effects of a nuclear winter scenario with a 

DSSAT model (Xia and Robock, 2013). Process-based crop models simulate the 

physical plant growth of a crop in great detail. However, these models are not very 

well suited for the use case presented in this work. Firstly, calibrating and running 

the models is too time consuming and data intensive for a first assessment and 

therefore, beyond the scope of the work. Furthermore, the crop models are currently 

not well adapted to the requirements of the analysis at hand as management 

techniques and pesticide influences are sparsely implemented. As presented in 

chapter 4, both aspects are crucial for the investigation of LoI impacts on crop 

yields. A second approach is the modelling of effects based on empirical 

relationships between yield and the explaining variables as reported in the literature. 

This method, however, does not allow for the level of spatial detail sought in 

assessment. Multiple regression or generalized linear models were considered as 

the third alternative. Statistical regression models have previously been applied to 

assess factors that influence spatial variability in observed yield (Bakker et al. 2005, 

Kaufmann and Snell 1997, Reidsman et al. 2007) and in predictive crop modelling 

contexts (Ferraro et al. 2009). The approach was chosen as the best fit for the 

proposed use case. 
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The GLM approach provided good results for a first spatial estimate. Nonetheless, 

as discussed above, there is room to improve the fit of the GLM beyond the scope 

of this thesis. Several limitations are listed above, namely the misalignment of the 

spatial value distribution between datasets, the differing weight of each yield value 

according to the harvested area and autocorrelation between values in close vicinity. 

All these aspects can be addressed by applying special forms of the regression 

model. A weighted regression can be employed to ensure that each yield value is 

included into the model according to the size of the harvested area in the same cell. 

The same concept is useful to handle autocorrelation in the data. In a geographically 

weighted regression, the cells are weighted according to their proximity. The 

implementation is more difficult, however, as the calculation of the weights is more 

complex. The confounding effect of misaligned data can be eased in two different 

ways. First a different resolution can be chosen, either by choosing coarser input 

datasets or by upsampling the high-resolution datasets. Upsampling can smooth out 

misaligned cells to some degree by averaging over a larger cell area. The datasets 

with a coarser resolution might not have the level of uncertainty to begin with. 

Ideally, datasets are retrieved from one source. In the use case at hand a country-

level analysis could be sensible as most of the variables can be obtained from the 

FAOSTAT database. Apart from managing the resolution, the fuzzy regression is a 

good tool to correct for high variability and mismatch in the data. Huang et al. 

(2010) recommend the application of soft computing like fuzzy regression for 

agricultural predictions as real-world data tends to be too imprecise to be analyzed 

with hard computing methods. In contrast to “hard” methods like a regular GLM, 

fuzzy logic does not decide between true and false but rather estimates the degree 

of truth for a value. Based on this logic it is better equipped to handle imprecise 

relationships and confounding factors. 

Next to the numerous special regression forms, accounting for missing variables is 

another method to improve model accuracy. Missing variables can be additional 

explaining factors but also interactions between already included variables. The 

present model does not include interactions. The categorical variables were coded 

as dummies to be considered in the GLM, but this type of codification does not 

allow for a correct fitting of the interactions. Instead, effect coding must be applied. 
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5.2 LoI prediction related limitations, improvements, and aspects 

The results demonstrate a substantial difference between phase 1 and phase 2 yield 

losses. It shows that phase 1 can be critical in the preparation for phase 2 because 

the yield losses are still manageable in first phase. This can provide the time 

necessary to adapt to the new circumstances by building up non-electrical logistic 

infrastructure, building tools and wagons, establish a communication system, 

implement new farming techniques, and crop rotations to manage pests and 

nutrients and just overall adjust as a society. The crucial component is the continued 

use of the agricultural machinery as it ensures that tasks can be completed on large 

farms even if the preparations for the transition to a human and animal operated 

system are still underway. In comparison to nutrient and pesticide inputs, irrigation 

and mechanized have a large effect size for all crops. However, this is probably due 

to the relationship between those two variables and the dependent variable which is 

clearer cut than for the remaining continuous variables. Potentially the effect sizes 

in the models are also influenced by missing variable bias. Due to data 

unavailability some of the factors that were identified as important for estimating 

yields in a LoI scenario were not included in the GLM and there could be 

components which are not yet known to influence the crop yield. 

The following elements were not accounted for in the analysis: seed availability, 

(dominant) variety and knowledge of farmers. Beyond these potential model input 

factors, there are other characteristics of a LoI scenario which codetermine the 

availability of the input variables in case of a catastrophe. The characteristics 

considered in the model are specified in chapter 3. Additionally, influences can 

result from the availability of feed for draft animals and tools and materials for draft 

work, draft animals’ constitution, population relocation, climate change, alternative 

pest control methods, crop rotations, alternative nutrient sources, means to conserve 

food and the time it takes to slaughter an animal. All listed factors and aspects have 

the potential to improve or decrease the crop yield in a LoI scenario. Nonetheless, 

most are likely to worsen the catastrophic impact. The two most important factors 

are: 

• Seed availability, 

• (dominant) variety 
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Seed availability and the distribution of crop varieties are closely interlinked. A 

large share of farmers, especially in industrialized countries, purchase their seeds 

from large global companies and do not retain seeds from their own harvest for the 

next year. Oftentimes these varieties are specifically bred to grow well in high-input 

conditions, some are even resistant against certain pesticides, and to be bought 

again. This does not mean that these seeds will not grow, nor will they necessarily 

grow badly under low input conditions, but they are certainly more prone to crop 

failure than local land races. In a global failure of electrical infrastructure highly 

specialized and industrialized plant breeding and seed production will likely also 

be disrupted. Maize would be particularly strongly affected as almost all maize 

crops are grown from hybrid seeds which are inbred varieties targeted specifically 

at a high one-year performance. If there are no seeds available from large seed 

companies and the seeds saved from the high-yielding varieties do not perform well 

in the LoI scenario, there will not be sufficient seed from landraces available to 

cultivate all the current cropland area. 
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6 Conclusion 

This thesis work was able to provide new insights on the impact of a large-scale 

industrial outage triggered by a global catastrophe on the yields of maize, rice, 

soybean, and wheat. The first spatially explicit and crop specific estimate for the 

effect on crop yields is presented for two phases of a LoI scenario differing in 

severity.  

Based on the maps presented at five arcmin resolution, it can be concluded that the 

spatial dimension of the repercussions of the catastrophe is highly relevant. A clear 

distinction between strongly and barely affected regions is visible in the data. The 

identified hotspots varied between crops according to the main growing regions but 

overall aligned with strongly industrialized agriculture. 

Noticeable differences could also be registered between phase 1 and 2. Available 

stocks of agricultural inputs, albeit constituting only a fraction of current use, 

substantially lessened the yield losses. Phase 1 is therefore a crucial step to allow 

agriculture to adapt to the new conditions. 

The elected methodological approach proved suitable for the use case in this thesis. 

The fitted GLMs showed good agreement with the data (ρ² between 0.34 and 0.47) 

and all chosen variables had a significant effect on the crop yield (p < 0.05). The 

models provide a solid basis to further develop the statistical approach by including 

more relevant variables or applying specific variants of the regression methodology. 

Proceeding from these conclusions further research should focus on specifying the 

estimates by developing the statistical approach presented here or by combining a 

statistical framework with either a machine learning approach or a process-based 

crop model. The methodology could also be applied to a wider crop range to gauge 

which crops fare better under losing industry conditions. In addition, a regional 

focused analysis could provide valuable insights. Improving the understanding of 

the dynamics in hotspot regions is one major goal while an analysis in Africa is 

advisable due to the lack of coverage in the work at hand. 

COVID-19 has illustrated the unexpected urgency of a global catastrophe and how 

fast things can go south. Let this work be a reason to be hopeful, that next time, 

we’ll do better.
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